. ' e

NAVAL POSTGRADUATE SCHooﬂ@

Monterey, California

[

|

|
I

METRA

AD-A245 389

THESIS

VHDL BEHAVIORAL DESCRIPTION
OF DISCRETE COSINE TRANSFORM
IN IMAGE COMPRESSION
by
DENG, AN-TE

September 1991
Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

32-02
HIIII/M;I’II!I”HIII !"h’ ’ﬂ

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE E

1a REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS !

Unclassitied

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT {
Approved tor public release; distribution 1s unlimited |

2b DECLASSIFICATION/DOWNGRADING SCHEDULE !

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING C2GANIZATION REPORT NUMBER(S) ﬂ,

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING GRGANIZATION i
Nuval Postgraduate Schuol (It applicable) Naval Postgraduate School i
EW
6c ADDRESS (City, State. and ZIP Code) 7b ADDRESS (City, State. ana ZIP Code) |
Monterey, CA 93943-5000 Monterey, CA 93943-5000 !
B8a NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 3 PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER 1
ORGANIZATION (If applicable)
8c ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
Plxfam tiement NO Propen TN Ty N LTV L A

Number i
1Y TITLE (Include Security Classification)
VHDL Behavioral Deseription of Discrete Cosine Transtorm in Digital Image Compression
12 PERSONAL AUTHOR(S} Deng, An-Te
133 TYPE OF REPORT 13b TiME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT

Master’s Thesis From To September 1991 139
16 SUPPLEMENTARY NOTATION

The views expressed in this thests are thuse uf the author and do not retlect the official policy or position ot the Department of Defense or the LS. }
(Government,

17 COSATI CODES 18 SUBJECT TERMS (continue on reverse If necessary and identify by block number)

FIELD GROuUP SUBGROUP Image Compression; Discrete Cosine Transtorm; VHSIC Hardware Desecription Language;

Top-Down design;

19 ABSTRACT (continue on reverse if necessary and identify by block number)

This thesis describes a« VHSIC Hardware Description Language t VHDL) simulation ol a hardware 8 x 8 Discrete Cosine Transform (DCT which
can be upphed to image compressin. A Top-Down Design approach is taken in the study, a discussion of DCT theory 1s presented, along with a
description of the 1-0D DCT circuit architecture und its simuiation in VHDL. Results of the 2-D DCT simulation are included for two simple test
palterns und veritied by hand calculation, demonstrating the validity of the simulation. Shortcomings tound 1n the simulation are described,
wygether with suggestions for correcting them. In the future, the VHDL description of the 8 x 8 image block 2 1) DU'T can be further developed inw
structural and gate-level description, after which hardware circuit implementation can occur.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED UNLIMITED D SAME AS RLPORT Q DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22¢ OFFICE SYMBOL
Chin-Hwa Lee (4081 646-2190 EC
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted ECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

Approved for public release; distribuit «is unlimited.

VHDL Behavioral Description
of Discrete Cosine Transform
in Image Compression

by

DENG, AN-TE
Lt. Col, Republic of China Army
B.S., Chung Cheng Institute of Technology, 1976

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEM ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: @J*MS‘/ Q ZQ.

DENGJAN-TE

Approved by: %/M/—‘
. in-Hwa Le esis Advnsor /
Q\\L -

oberto Crlst1 econd Reader

Jéeph Sternberg, Cha?;man

Department of Electronic Warfare

ABSTRACT

This thesis describes a VHSIC Hardware Description Language (VHDL) simulation of
a hardware 8 X 8 Discrete Cosine Transform (DCT) which can be applied to image
compression. A Top-Down Design approach is taken in the study, a discussion of DCT theory
is presented, along with a description of the 1-D DCT circuit architecture and its simulation in
VHDL. Results of the 2-D DCT simulation are included for two simple test patterns and verified
by hand calculation, demonstrating the validity of the simulation. Shortcoming found in the
simulation are described, together with suggestions for correcting them. In the future, the VHDL
description of the 8 X 8 image block 2-D DCT can be further developed into structural and

gate-level description, after which hardware circuit implement can occur.

e 0
a2
i . ST
: ,

Accﬂasicn For
l\)) [E
153

b

!

t7

V

l

iii PooA ottty Ootes

TABLE OF CONTENTS

. INTRODUCTION e e
A. LITERATUREBACKGROUND
B. OBIECTIVE i,
C. RATIONALE FOR USING VHDL TO DESCRIBE THE CIRCUIT .

D. OVERVIEWOFTHETHESIS

II. BASIC DISCRETE COSINE TRANSFORM THEORY
A. DISCRETE COSINE TRANSFORM IN IMAGE COMPRESSION .
1. Rationale for using Discrete Cosine Transform
2. Formulae of the Discrete Cosine Transform
B. ALGORITHM FOR 8 BY 8 IMAGE DISCRETE COSINE
TRANSFORM i

1. Methodology of 2-DDCT

2. Principle of distributed arithmetic

3. Methodology for forming the ROM storage

.............

4. Exploiting the symmetry in DCT to save storage in ROM

III. A STRUCTURAL ARCHITECTURE FORTHE I-DDCT

iv

A. 8 X 8 IMAGE BLOCK 1-D DCT CIRCUIT ARCHITECTURE ... 16

B. TRANSPOSE RAM ARCHITECTURE 20

IV. VHDL BEHAVIORAL DESCRIPTION OF THE 1-D DCT COMPONENT . 22

A. BLOCK DIAGRAM DESCRIPTION 22
B. BI-TO-DI AND DI-TO-BI VHDL PACKAGE 23
C. CLOCK GENERATOR MODULE (CLOCK GE) 26
D. PARALLEL SHIFT REGISTER MODEL (LOAD). 27
E. SHIFT-TWO-REGISTER MODEL (SHIFT). 29
F. 2-BIT ADDER/SUBTRACTOR MODEL (ADDSUB) 31
G. SHIFT REGISTER MODEL (REG) 33
H. READ ONLY MEMORY MODEL (ROM) 34
I. SHIFT RIGHT 1-BIT REGISTER MODEL (SHI_ 1) 35
J. ADDER/SUBTRACTOR-G MODEL (ADD G) 36
K. SHIFT REGISTER-H MODEL (REG H) 40
L. 16-BITADDER IMODEL(ADD) 40
M. SHIFT RIGHT 2-BIT REGISTER MODEL (SHI 2) 42

PARALLEL LOAD SERIAL SHIFT REGISTER MODEL

A. FORMATION OF ROM STORAGE VALUES 46

B. SIMULATION AND TESTING IMAGE PATTERN (I) 47

C. SIMULATION AND TEST OF IMAGE PATTERN (II) 57

D. RESULT ANALYSIS 60

E. EXPERIENCE 63

1. Input Data Sequential Order error e 63

2. Formation of 2-bit Adder in VHDL source code 64

3. No Timing control in Add_i Model 64

4. "Set"controlinTestBench 65

5. Signals cannot be used as variables in VHDL 66

6. Preventing Negative Zero occurrences in Packl 66

VI. CONCLUSION e e e 67
APPENDIX A. 12-BIT 1-D DCT VHDL SOURCECODES 69
APPENDIX B. 16-BIT 1I-D DCT VHDL SOURCECODE 105

APPENDIX C. MATLAB PROGRAM OF DECIMAL-BINARY

CONVERSION e 114

APPENDIX D. STRUCTURAL 1-D DCT HAND CALCULATION 115

vi

APPENDIX E. FORMATION OF 2-BIT ADDER 121

ATWOBIT ADDER TRUTHTABLE 121
LIST OF REFERENCES 125
INITIAL DISTRIBUTION LIST 126

vii

Table I;

Table II:

Table III:

Table IV:

Table V:

Table VI

Table VII:

LIST OF TABLES

Multiplication Coefficients
8 x 8 image pixel values of Pattern (D
1-D DCT spectral coefficients of Pattern (I) in VHDL
simulation, o oo
1-D DCT coefficients of pattern (I) using Spider Subroutine . . .
Transposed 1-D DCT coefficients of pattern (I) in VHDL
simulation L L
2-D DCT spectral coefficients of pattern () in VHDL
simulation o

Table Vin integer values

Table VIII: 2-D DCT spectral coefficients of pattern (I) using Spider

Table IX:

Table X:

Table XI:

Table XII:

Table XIII:

Table XIV:

Table XV:

Table XVI:

Subroutine L
2-D DCT coefTicients of pattern (I) using direct calculation .

16-bit binary number representation of table (V)
Serial 2-bit addition/subtractionoutput
2-D DCT coefTicients of pattern (I) using manual calculation . .
8 x 8 image block pixel values of pattern (II)
1-D DCT coefficients of pattern (IT) using VHDL simulation . .
2-D DCT coefTicients of pattern (II) using VHDL simulation . .

Pattern II 1-D DCT coefficients using Spider Subroutine

viii

50

51

51

52

52

53

54

55

56

57

58

58

59

Table XVII:

Table XVIII;
Table XIX:
Table XX:

Table XXI:

2-D DCT coefficients of pattern (II) using floating point

calculation L 60
Equivalent decimal numbers of table (VD) 61
Equivalent decimal numbers of table (XII) 61
Truth table of 2-bitadder 121
(Table XX) continue 122

1X

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

LIST OF FIGURES

1 2-DDCT Block Diagram.
2 Architectureof 1-DDCT
31-DDCTblockdiagram
4 clock geblockdiagram
§ Serial load parallel shift register block diagram
6 Shift two register block diagram
7 2-bit add/sub block diagram
8 "adsu" flowchart
9 shift register (reg) block diagram
10 ROMblock diagram
11 Shi_1 register block diagram
12 Add gblockdiagram
13 Shift register g block diagram
14 16-bit add_iblock diagram
15 Shift right 2-bit register block diagram
16 Parallel shift serial output register block diagram
17 Block diagram of Test Bench
18 Patterm (I) 8 x 8 imageblock
19 U0 hand calcuiation

20 Vihandcalculation

Fig. 21
Fig. 22
Fig. 23
Fig. 24

Fig. 25

V3 hand calculation 117
Ud hand calculation 118
VS hand calculation L L. 119
V7 hand calculation 120
Karnaugh map reduction 123

X1

ACKNOWLEDGEMENTS

Many of the ideas in this thesis are based on the experience of my advisor, Dr.
Chin-Hwa Lee, who has labored with me through the chapters. Many thanks go to Dr.
Lee for his patience and valuable advises. Also I am very grateful to Dr. Roberto Cristi
for his comments on my thesis.

It has been a pleasure sharing with Dr. Pat Pauley, who not only has be<n a
supporting force, but also has proofread my thesis in no time during her busiest hours.

I owe special thanks to those who have suffered with me through the writing
process -- my family: my wife Vicky, my daughter Bobo and my son Joshua.

Do you not know? Have you not heard? The Lord is the everlasting God, the
Creator of the ends of the earth. He will not grow tired or wea y, and his
understanding no one can fathom. He gives strength to the weary. Even youths
grow tired and weary; and young men stumble and fall; but those who hope in the
Lord will renew their strength. They will soar on wings like eagles; they will run

and not grow weary, they will walk and not be faint.
Isaiah40:28-31

xii

I. INTRODUCTION

A. LITERATURE BACKGROUND

This thesis is basically developed from the paper "An 8 X 8 Discrete Cosine
Transtorm Chip with Pixel Rate Clock” by D'Luna, L. J. [Ref. 1]. The oniginal paper
introduced the algorithm and implementation of one-dimensional (1-D) as well as two-
dimensional (2-D) Discrete Cosine Transform (DCT) where the principle of distributed
arithmetic is used. According to the algorithm introduced, hardware circuit architecture
was implemented.

Another very important aspect discussed in this thesis is the implementation of a
"Top-Down Design" concept that uses Very High Speed Integrate Circuit (VHSIC)
Hardware Description Language [Ref. 4-8] as a tool. "Top-Down Design" is a kind of
design that describes the given algorithm with a high level language first. After the
algorithm is described, the structural architecture is described next. Finally this structural
description is developed into hardware circuit. VHDL facilitates the algorithm

description, structural description as well as hardware circuit simulation.

B. OBJECTIVE
The purpose of this thesis is to describe the behavior of the iraplemented
architecture of the algorithm mentioned above with VHSIC Hardware Description

Language (VHDL). It was simulated on a workstation in order to analyze the

characteristics. In the process of describing the behavior of this structural architecture,
complicated hardware circuits are developed in behavior models. This is usually the first
step in a "Top-Down Design" task. The objective is to use a DCT implementation as an

example to study the "Top-Down Design" methodology.

C. RATIONALE FOR USING VHDL TO DESCRIBE THE CIRCUIT

In the past, VHSIC design was dominated by bottom-up design methodologies
where hardware circuit details were established and produced before the system was
constructed [Ref. 4]. This methodology is very useful in dealing with small circuits.
However, when the system gets complicated, bottom-up design methodology is more
difficult to handle. In this work, a high-level, top-down design approach is taken.
Initially, a description of the algorithm is written. Later on, a detailed architecture is
described. All are done in VHDL. VHDL is a hierarchical hardware description language
which supports mixed-level simulation. This thesis shows the beginning steps for a "Top-
Down Design" approach. The 8 X 8 image block DCT algorithm were implemented into
a behavior model and a structural model. VHDL were used here to accomplish the initial

design of the 1-D Discrete Cosine Transform implementation.

D. OVERVIEW OF THE THESIS

There are six chapters in this thesis. The first chapter is an introduction to the
literature background, the objective, and the reasons for using the VHDL. Chapter II
introduces the algorithm of Discrete Cosine Transform and the principle of distributed

arithmetic. Chapter III examines the components of the structural architecture. Chapter

IV gives the actual VHDL behavioral description of the components, its actual circuit
block diagram, and its connections. Chapter V analyzes the simulation results and gives

some experience on design problems. The last chapter is the conclusion.

II. BASIC DISCRETE COSINE TRANSFORM THEORY

A. DISCRETE COSINE TRANSFORM IN IMAGE COMPRESSION

1. Rationale for using Discrete Cosine Transform

Image transmission or storage usually deals with a large amount of digital
data. There are usually 512 X 512 pixels in a monochrome picture. If one pixel needs
8 bits to represent its information, transmitting a monochrome picture means that more
than two megabits (512 x 512 x 8 = 2,097,152) of digit data need to be transmitted.
There are many ways to do coding, compressing huge amounts of data to reduce the
transmission bandwidth and the amount of storage space required. Among these methods,
transform domain compression is an effective way to eliminate the redundant information
in images, since image data are usually highly correlated.

Image transformation is used to extract a small number of significant
coefficient values from the original image, by mapping the image data onto a two-
dimensional spectrum. Each coefficient in the transform domain represents some amount
of energy of the spectral component. The original spatial image can then be recovered
back from these coefficients, since each image has its own specific spectral pattern. After
the transformation, there are only a few coded values required to describe the original
image. Consequently, it is possible to save bits during transmission and storage.

The Fourier transform algorithm has been applied to image processing for a

long time, since it possesses many desirable analytic properties. But, it has two major

drawbacks. First, the computation of the Fourier transform involved complex numbers
rather than real numbers. Secondly, the decreasing rate of spectrum energy as frequency
increases 1s low. This low decreasing rate in the spectrum is a very significant
disadvantage in image coding.

The Discrete Cosine Transform (DCT) has the advantage of involving only
real number computations. It is well suited for image data compression. Consequently,
8 x 8 image blocks of two dimensional cosine transforms have been adopted as an
international standard draft (JPEC) [Ref. 1]. This thesis concentrates on studying the

Discrete Cosine Transform and building a circuit for 8 X 8 image blocks.

2. Formulae of the Discrete Cosine Transform
The general formula of a one-dimensional Discrete Fourier Transform (1-D

DCT) is expressed as

Z, = Exicik)

where Z, is the transform of X, C, is the forward transformation kernel, and i and k

range from 0 to N - 1. The inverse transform of the 1-D DCT is given by the relation

N-1
B ST @
k=0

where h, is the inverse transformation kernel. The characteristic of the transform is

determined by its transformation kernel properties.

The 1-D DCT forward kernel is given by

Co = — 3)

N 2N

Substituting Eq. (3) and (4) into Eq. (1) yields

1 N-1
Z,= — Y X, ®)
SN
2 @ Qi + Dkn 6
Zk = -ﬁ gxicm——-ZN——

where Z,, k = 0, 1,2, ..., N- 1, is the 1-D DCT of X(i).
The inverse kernel is of the same form as Eq. (3) and (4), so that the inverse

DCT is expressed by the equation

N-1 .
X =Lz % Y z,cos &+ Dk M

‘' /N i 2N

wherei =0,1,2, ..., N- L.

The two-dimensional forward DCT kernel is given as

1
2 2i + Dkn 2j + Dixn
C.., = —[cos cos 9
w = Nt 2N I 2N !
wherei,j=0,1,..., N-1l,andk, I =1, 2, ..., N- 1. The inverse kernel is also of
this form. Thus, the two-dimensional DCT pair is expressed by
NN
Zy = —E E (10)
N3 jo
N-1N-1
2 2i + kn @2j + Din
Z, = — X [cos cos 11)
N N.Z-.; ,§ it T N
where k, I = 1,2, ..., N-1, and
N-1 N-1
2 (2l+1)k1t @2j+Din (12)
X.. __z Z cos
v N§ lzl: ulcos Il >N]
wherei,j=0,1, ..., N- 1.

It can ke seen that DCT transformation kemnels are separable from Eqgs. (3),
(4), (8), and (9). Therefore, the two-dimensional forward or inverse transformation can

be computed by applying two one-dimensional DCT operations successively.

B. ALGORITHM FOR 8 BY 8 IMAGE DISCRETE COSINE TRANSFORM

1. Methodology of 2-D DCT
Let x, denote an image pixel value, which is an n-bit number. The indices
1 and j represent the row and column location of the pixel, respectively. The N X N

two-dimensional DCT can be expressed by
1 N-1 N-1
Zy = I—VE)Y Xy (13)
j=0 i=0

Z, =

N-1 N-1
2 2i + Dkn (2 + Din

= os cos kl =12, .. N-1 (14)
N,%,z_;,x"c 2N N 2l

Z, is the spectral coefficient corresponding to the ¥* horizontal frequency and /* vertical
frequency. In matrix notation, the inner summation is equivalent to a 1-D DCT
computation on the columns of X. The outer summation is equivalent to a 1-D DCT
computation on the rows of the inner summation results. C can be used to represent the

2-D DCT matrix. It has the 1-D DCT basis vectors which are elements C,, (1-D DCT

kernels), where

Cop = — m = 0,12,.,N-1 (15)

c, - J%m(zm 2+Nl)1m (16)

m=20,1,2, ..., N-1; k =1, 2, ..., N-1. Because the kernels of the DCT
transformation can be separated, the 2-D matrix Z of 2-D DCT coefficients can be

represented as

Z = [X'cyc = c'xC. a7

This process can be realized in an architecture shown in Fig. 1 (referred to Ref. 1]).

O=1-D
1=2-0
102D Sxt1Der
/ 082D
>4 imege black “/ DCT Cosfficients
A
¢4 word -
i 81
) 0o | =
10 0CT TRANSPOSE —_—
[A / /_ 1-DDC'I' o—--
7 7+ M 7 MUX e
{on columns) ——
12 18 | conrrre 16 | (enrows) 18/ et
©
- ik
18
dot 8x1 TRAMSS dcdx1_2

Fig. 1 2-D DCT Block Diagram
The N X N block of image X is input column by column first, and the 1-D DCT
computation is done. This computation is carried out as shown in the square bracket of
Eq.(17) for the /* column (for j = 0, 1, ... , N - 1). The rcsult of this N X N matrix

is then transposed for the second row by row 1-D DCT computation. This transpose is

done as described by term on the outside of the square brackets in Eq.(17). After the
transposition, the same 1-D DCT computation involving the same transform matrix C is
carried out again. The transpose step takes care of the column to row change operations
of the data. The key operations involved here are the matrix transpose and the 1-D DCT

computation.
2, Principle of distributed arithmetic
The implementation of the 1-D DCT studied here is based on the principle
of distributed arithmetic. Using this principle, it is possible to implement the "bit
calculation” into the chip design. "Bit multiplication" is simply carried out by using the
input data bit pattern to address a Read Only Memory and by summing up all the results
to obtain the "transposed spectral values”. If Y, (Y, = (y,)=o) is the image pixel va.ue

represented by a row vector, then its 1-D DCT is
Z,= Y y.Cu ik=01.,N-1 (18)
Now the input data y,, can be represented in 2’s complement notation with
p-bit as
p-2
Vim = Vi V2P 4 ¥y 020 (19)
q=0

where y,,? is the ¢” bit of the incoming image pixel values y,, which have a value of

either 0 or 1. 27 is the binary weight of the ¢ bit. For example, if the input data is a 2's

10

complement 8-bit pattern then y,, = -v,,” X 27 + y,,” x 2 +y PV x 2! +y, ¥ x 2*

Y X 2P+, X2+ y, Y x 2 4y, x 2° Substituting Eq. (19) into Eq. (18)

N-1 -1 p-2 N-1 .
- - -1)
Z, = "Z CVim 2N €2t
m=0 q=0 m=0

p-2
Z, = -F(C Y 2r ! « T FC, Y21
q=0

where F, is a function of the vectors C, and Y/? and is represented as

N-1
F..k(Ck,Y,-‘q)) =Y cﬂyiﬁ) for ¢ =0,12,..., p-1.
m=0

Its binomial form can be shown as

(C) N @ @ @
F(C,Y,)) =Cwio YO to t O iNa

where,q =0, 1, ..., p-l.

3. Methodology for forming the ROM storage

20

21

(22)

(23)

In Eq.(23), ¢, are 1-D DCT basis (kemnels) vectors used as multiplication

coefficients. They are converted from decimal numbers to the 2's complement notation

used in this thesis. y,,'Y are the bit patterns represented in 2’s complement form of the

N data points y,,. Because the basis vectors are fixed value coefficients and F, are

functions of the basis vectors and the binary bit patterns, the values of F, (with a fixed

11

k) for all possible N bit patterns (¥, m = 0, 1, 2, ... , N - 1) can be calculated and
stored in Read Only Memory (ROM) according to Eq.(22) and Eq.(23). The N-bit
pailcrn changes with time according to the incoming data v, (m = 0, 1, 2,..., N-1).
This bit pattern will form an address to access the ROM to extract the corresponding
F,(C,Y/?) value.

From Eq.(20) and Eq.(21), the corresponding 1-D DCT spectral coefficient
Z, can be computed by shifting and adding the F, values stored in the ROM. In Eq.
(21), F, is a function of the corresponding basis column vector C, fork =0, 1, 2, ...,
N-1. F, is different from each other as k varies. The incoming data vector Y, is the same
for the multiplication coefficients involved tor all values of k. It is possible to build up
N separate memory banks of multiplication coefficients and compute the N 1-D DCT

spectral coefficients Z, (k = 0, 1, 2,..., N-1) in parallel or concurrently.

4. Exploiting the symmetry in DCT to save storage in ROM
Here, 8 x 8 image blocks are used, so N = 8. The incoming data has 8 bits.
This means 2* = 256 possible bit patterns will be formed into addresses. There shall be
256 corresponding muitiplication coefficient sum stored in the ROM for each of the 8
DCT spectral coefficients. However, advantage can be taken of the symmetry in the DCT

basis vectors. It can be shown that

Coi = Crtms for k = 02,..,N-2 (k even). 29

For example,

12

o oo

where c,, is defined by Eq. (15) and Eq. (16). And the following can be proven,

25)

Cu = -CN_I_M for k = ., N-1 (k odd) (26)
For example,
N O N @n
o1 8 16 8 16 n
Hence, Eq. (18) can be reduced to
N2-1
= E Oim * Yin-1-mCom
m=0

where k = 0, 2,..., N-2 (k even)

and,

13

(28)

NR-1
Zt’k = Z (yun - yi,N-l-m)Cluk

m~=0

where k = 1, 3,..., N-1 (k odd). 29

Equations (22) and (23) then can be reduced to

NR2-1

F(CpY i@) = E CoiOim * i -l-m)(q)
m=0 N
where k = 0, 2, 4,..., N-2 (30)
N2-1

F u(Cin(q)) = }: CouaYy - Yuv-x-m)(q)
m=)

where k = 1,3,5 N-1. (31)

From the above equations, it is possible to add or subtract the incoming data
points before memory access and reduce the number of distinct data values in ROM from
N to N/2. The total number of bit patterns is now only 2%? = 2¢ = 16. Only a 16 word
ROM is necessary for each of the 8 DCT coefficients, and therefore a total of 16 X 8
= 128 word ROM is required. This savings of ROM storage is significant compared to
the cost of using adders and subtractors in a different architecture. Since there is only
one particular bit pattern (those bits which have the same binary weight) at a time

allowed to address the ROM, and bit pattern changes according to the serially coming

14

data, the addition and subtraction can be done in a bit serial fashion. This advantage is

exploited in the chip implementation discussed in the next chapter.

15

III. A STRUCTURAL ARCHITECTURE FOR THE 1-D DCT

A. 8 x 8 IMAGE BLOCK 1-D DCT CIRCUIT ARCHITECTURE

The 1-D DCT architecture studied previously is shown in Fig. 2 [Ref. 1]. There

Pomi 9] Coofikd]

&
§
;

LLELEY
T

;

T

Tty

Fig. 2 Architecture of 1-D DCT

are 8 slices parallel to each other corresponding to the 8 DCT coefficients which are
computed concurrently. First, 12-bit pixels AI(11:0) are put column by cclumn into the

"serial-in-parallel-out” shift register (A). This sequence needs 8 clock cycles to complete.

16

After the 8" clock, the shift registers output the data into the "parallel load 2-bit serial
shift register” (B) at once. This is completed at the 9* clock cycle. At the same time, the
serial-in-parallel-out shift registers also get their new incoming data. The data stored in
the B shift register has to be added or subtracted according to Egs. (30) and (31) in order
to reduce the ROM storage. In order to make Eqs. (30) and (31) more understandable,

they are expanded as below

N2-1
3 ik(Ck’Yi(q)) = E Cou(Y + Yi,N-l—m)(q)
m=0

m=0 m = | m =2 m=3
= Coo(Yo+ Yo)P+C (Y + Vi) O+ Coo(Yo+ Yis) ¥+ Cio(Y5+ Yu)9--—-k = 0
+Cn(Yio+ Yo) O+ C Y+ Yi) Y+ Copy(Yo+ Yis)P+Cap(Y + Yi) -k = 2
+Cou(Yot+ Yo) P+ C (Yo + Y@+ Cou(Yo+ Yi) @+ Coy(Y+ Y)k = 4

+Cos(Yio+ Yo) P+ Cio(Yiu+ Yi) P+ Coe(Y o+ Yis) O+ Co(Ya + Yi) ¥~k = 6

N2-1
FuCo¥®) = X Cult - Y)@
m=0

m=20 m=1 m =2 m=23
=Co(Yir Y)®+C(Yi-Yi) P+ Co (Y- Yi) @+ Cy (Y- Y)@k = 1
=Cis(Yor Y) @ +Cps(Yi-Yi) ®+Cp(Yo- Yis) @+ Cis(Yy-Yu) @k = 3
=Cos(Yr Yo) @ +Cis(Yi- Yoy O+ Cos(Y- Yis) @+ Cys(Yi5-Yi) @----k = §

=CoYYo)+CooYu- Y O+ Cn (YY) O+ (YY) @k = 7

17

The numbers above the expanded equation represent the index m, and the numbers on
the right side are the index k. C, are multiplication coefficients. The bit
addition/subtraction is determined according to whether k is an even or odd number.

Registers B must be emptied in less than 8 clock cycles in order to receive new
Jata coming from registers A. Each datum is 12 bits in length. If a single bit is coming
out of registers B, it will take 12 clock cycles to empty the register. This will cause
collision during the addition and subtraction of the data. There are two ways to solve this
problem ; either to clock register B *wice as fast or to shift out data 2 bits at a time. The
latter alternative has been chosen for the reasons of convenient design and easy system
considerations. The shifted 2-bit data is added or subtracted in the "2-bit
adder/subtractor” C. Their output is stored in the shift registers D which split the least
significant bit and most significant bit (binary weight ¢ = 0 and q = 1) into two output
lines.

Next comes the question as to where the output data of the adders and subtractors
should go to address the ROM. How should the values in the ROM be arranged? It is
shown in the above expanded equations that all the adder outputs which is designated as
(Uy(0:3) and U,(0:3) (Refer to Fig. 2). They are the 4 bits patterns which are the sum
of the two adjacent bit ¥,,”. q = 0 represents LSB bit and q = 1 represents MSB bit in
Eqs (20) and (21). (Uy(0:3) and U,(0:3) should be multiplied by the coefficients Cg,
where k = 0, 2, 4, 6. All the two adjacent difference output Vy(3:0) and V,(3:0) should
be multiplied by the coefficients C,, where k = 1, 3, 5, 7. As a result, the four adders

and subtractors output bit patterns form a 4-bit address to access the corresponding

18

accumulated sum of the coefficients C,,, k = 0, 1,... 7 which are stored in ROM E.
This step will accomplish the 1-D DCT coefficient multiplication. The output of the
ROM is first latched in register F, and then adder/subtractor G will calculate the sum of
the "2-bit" spectral coefficient values according to Eq (21). The LSB (q = 0) values are
shifted to the rnight one position and added to the ¢ = 1 values. This addition will
continue until the last bit pattern (12™) of the incoming column data. According to Egq.
(19), the incoming data have been represented in 2's complement notation, so the most
significant bit’s value should be subtracted from all the previous summations. This is
done by changing the add/sub control line of G into subtraction at the clock cycle of the
last bit pattern for each column of data.

The 2-bit sum or difference results of G are stored into register H and then sent to
the accumulator I and J. The accumulator consists of one "16-bit adder” and a "shift
right 2-bit register”. The value stored in ROM E is a 16-bit word. The 16-bit adder I
adds the previous 2-bit right shifted value (output of J) to the incoming value (output of
H). The resulting value then is output to J register to do the 2-bit right shift. This process
will accomplish the computation of Eq. (21) as index q varies from O to p-1 in 2 bit
increments. One thing has to be noted with caution; the initial value in the shift right 2-
bit registers for every incoming column of data should be zero. Otherwise, the previous
column values would accumulate. To avoid this, just clear the shift right 2-bit register
at the beginning of the accumulation of every column group.

After 8 clock cycles, the accumulated values are parallel loaded into register K.

Similar to register A but in the reverse direction, register K puts out the 1-D DCT

19

spectral coefficients column by column. These 1-D DCT coefficients are then transposed
by the transpose RAM (TRAM) according to Eq.(17). The transpose RAM is described
in the next section. After the transpose RAM, 1-D DCT coefficients are then input into
again the same 1-D DCT architecture. The only difference now is that the registers A

and B have to be expanded from 12 bits to 16 bits for the second transform.

B. TRANSPOSE RAM ARCHITECTURE

According to Eq. (17), the purpose of the "transpose RAM" is to change the 8 X
8 1-D DCT coefficient block’s columns into rows; and rows into columns. The
coefficient values are generated from the 1-D DCT architecture column by column.
First, these values are put into a RAM while the transposed values are written.
Therefore, the transpose RAM must have the capability of reading in the 1-D DCT
values and writing out the transposed values in the same cycle. How can :nis be done?

The coefficient values come out of the 1-D DCT architecture in serial order; the
0, 1, 2,..., 7 coefficients of the first column of the 8 X 8 block come in first and then
the 0,1,... 7 coefficients of the second column and the third column and so on. This
order is a long stream of coefficients 0,1,... 63 for each 8 X 8 image block. After
storing them in the RAM, the coefficients must be read out in groups of 8 values in the
order of O, 8, 16,..., 56; 1, 9, 17,..., 57; 2, 10, 18,..., 58; 3, 11, 19,..., 59; 4, 12,
20,..., 60; S, 13, 21,..., 61; 6, 14, 22,..., 62; 7, 15, 23,..., 63 to achieve the transpose
operation. In the same cycle, just after reading out the first block of transposed values,

the coefficient values of the second block can be written into those locations. It is just

20

like reading block 1_0 (first 8 X 8 block position 0) and writing block 2_0 (second 8 X
8 block position 0), reading block 1_8 and writing block 2_1, reading block 1_16 and
writing block 2_2, and so on. In order to achieve the transpose of the second block, the
sequence for reading out block 2 must be in the order of 0, 1, 2,... 63. When reading
out the coefficients of block 2, the third block coefficients are being written into the same
locations just after read out. The order is just like reading block 2_0 and writing block
3_0, reading block 2_1 and writing block 3_1, reading block 2_2 and writing block 3 2,
and so on. Notice the sequential order is 0, 1, 2,...63 first, and then 0, 8, 16,..., and
then again in the sequential order of 0, 1, 2,...63, and so on.

As shown before the structural architecture design is based on the principle of
distributed arithmetic, and it is data-path oriented. The methodology to describe this

architecture in VHDL and to simulate it on a computer are discussed in the next chapter.

21

IV. VHDL BEHAVIORAL DESCRIPTION OF THE 1-D DCT COMPONENT

A. BLOCK DIAGRAM DESCRIPTION

cr] |ser
= LOAD —{ SHIFT F—1{ ADSU = REG | ROM | SHI_1
A B C D E F
e i Sl i

accces | e Ay
ADD_Q = REG_H =1 ADD_| = SHI_2 =={RESULT—>

%ﬁjﬂo'e H | J KP

—+ H orjp——]
CLOCK
CONTL > DELAY PACK1 N 1] 1 1 I
i f TEST BENCH

Fig. 3 1-D DCT block diagram

The block diagram of the 1-D DCT shown in Fig. 3 can be described in models
using VHDL. The block diagram shown here includes a 1-D DCT system discussed in
chapter III and the additional clock generators, delay lines, control line, package 1, and
test bench. There are minor differences between this diagram and the architecture

described in the previous chapter. What is taken into consideration when simulating this

22

system in VHDL is that a signal flow latency will occur. Therefore, a delay line 1s
necessary to change the clock triggering time and solve this latency problem.
Additionally, the architecture in the previous chapter does not make it clear when to
control the add/sub register G and fulfill the calculation of summing 2’s complement
values. It is shown here that the control line generating this control bit is triggered by
the delayed clock.

From the modeling point of view, it is rather complicated to build up a 16-bit adder
in VHDL following the usual arithmetic logics. The easiest approach is to convert the
16-bit binary coefficient values into integer numbers and then do the addition or
subtraction in integers. After the integer addition or subtraction, the integers are simply
converted back to binary values. This conversion task is accomplished by functions in
package 1. A VHDL package is a collection of functions and procedures. Of course,
some overflow/underflow situations are expected to occur during these conversions. One
last thing to note in Figure 3 is that the test bench module controls all the signal flow,

the input data, and the output data, and it also simulates the whole design.

B. BI-TO-DI AND DI-TO-BI VHDL PACKAGE
the package 1 in VHDL is shown below,

package packl is -- Package declaration
procedure bi_to_in -- Procedure 1 changes 16 bits binary into integer
(variable x : bit_vector(15 downto 0);
variable y : out integer);
procedure in_to_bi --Procedure 2 changes integer into binary
(variable m : in integer;
variable n : out bit_vector(15 downto 0));end packl;
package body pack! is -- Package body declaration

23

procedure bi_to_in -- First procedure that changes bits to integer
(variable x : bit_vector(15 downto 0);
variable y : out integer) is
variable sum : integer : =0;

variable p : bit_vector(15 downto 0);

begin
pi= X
if p(15) = '1’ then -- Change negative value to positive

for i in O to 14 loop

if p(i) = '1’ then
for iin O to 13 loop
p(i+1) := not p(i+1);
end loop; exit;

end if;
end loop;
for k in O to 14 loop -- Integer conversion
if p(k) = '1’ then
sum := sum + 2**k;
end if;
end loop;
y ! = -sum; -- Convert back to negative value
else
for | in O to 14 loop -- Positive value conversion

« p() = "1’ then
sum := sum + 2**|;
end if;
end loop;
y := sum;
end if;
end bi_to_in; -- end of procedure 1

procedure in_to_bi -- Second procedure that changes integer to bits
(variable m : in integer;
variable n : out bit_vector(15 downto 0)) is
variable temp_a : integer : = 0;
variable temp b : integer : = 0;
variable w : bit_vector(15 downto 0);
begin
if m < O then
temp_a := -m; -- Take the absolute value of negative values
else
temp_a := m;
end if;

24

for i in 14 downto O loop -- Binary conversion
temp_b := temp_a/(2**1);
temp_a := temp_a rem (2**i);
if (temp_b = 1) then
w() :="1";
else
w() 1= '0";
end if;
end loop;
if m > 0 then
w(15) :="0"; -- Assign positive sign bit
else
w(l5) :="17% -- Assign negative sign bit
for k in O to 14 loop
if w(k) = '1" then
for k in O to 13 loop -- Invert negative bits to 2's complement
w(k+1) := not w(k+1);
end loop; exit;
end if;
end loop;
end if;
if w(14)="0" and w(13)="0" and w(12)="0’ and w(11)="0"
and w(10)="0" and w(9)="0" and w(8)="0" and w(7)="0’
and w(6)='0’ and w(5)='0" and w(4)="0’ and w(3)="0’
and w(2)='0" and w(1)="0" and w(0)="0"
then
w(l5) := 0" -- Avoid negative zero
end if;

endnir':l-_—_toil;)i; -- end of procedure 2
end packl; -- end of procedure
This VHDL package used in the simulation is basically similar to any other high-
level language subroutine involving specific shared operations. The difference here is
that it is possible to gather several different procedures or functions together in one

package. The packl here consists of two procedures -- bi_to_in and in_to_bi. Bi_to_in

converts the 16-bit binary numbers (represented in 2's complement notation) into positive

25

or negative integers. The in_to_bi procedure converts the positive or negative integers
back to 2's complement 16-bit binary numbers. Note that in the 2's complement number
system used here, there are only 16 bits including one sign bit. In overflow situations,

the digits that overflow will be truncated.

C. CLOCK GENERATOR MODULE (CLOCK_GE)
The block diagram of the "clock_ge" is shown in Figure 4.
The interface connection (port map in

VHDL) has also been shown. This tells

how the circuit can be connected to the

test bench. The VHDL source code of the

clk.vhd is shown below,

entity clock_ge is -- Entity

-- declaration . .
Fig. 4 clock block diagram
port(CLCK :inout bit); 1g. 4 clock_ge iag
end clock_ge;
architecture clk_ctl of clock_ge is -- Architecture declaration
begin

process(CLCK) -- Process declaration
variable I : integer : = 0;
begin -- Process begin
CLCK < = not CLCK after S ns; -- Switching clock generation
[:=1+1,;
assert | <= 80 -- Assertion terminates the infinite process
report "job done”
severity Error;
end process; -- End of process
end clk_ctl; -- End of architecture

There is a sensitivity signal "CLCK" in the source code which provides the clock

for all the circuits. The initial value of CLCK is "0." Its value is changed into "1" after

26

5 ns. Since a process in VHDL basically is an infinite loop, it is necessary to use an
"assert” instruction to terminate the process. By changing a counter value "I", the job

can be terminated appropriately after 80 iterations.

D. PARALLEL SHIFT REGISTER MODEL (LOAD).

LOAD
BO = dO
B1 d1
B2 d2
di = Al B3r=e d3
clock_ge B4 d4
BS d5
B8 dé
CLCK ck BT d7
ck I

Fig. S Serial load parallel shift register block diagram
Figure 5 shows the detailed block diagram of the parallel shift register (LOAD).
The source code in VHDL is shown below

entity LOAD is
port (Al : in bit_vector(15 downto 0); BO,B1,B2,B3,B4,B5,B6,B7 :

out bit_vector(15 downto 0);CLK : in bit);

end LOAD;
architecture BEH of LOAD is

27

type shift is array (0 to 7) of bit_vector(15 downto 0);
begin
process
variable A : shift;
variable I,count : integer := O;
begin
wait until CLK’event and CLK = ’1’; -- Clock controls the timing
for count in O to 7 loop
wait until CLK’evert and CLK = "1
for I in O to 6 loop -- Fush input values down to correct position

A := A(I+1);
end loop;
A(7) .= Al
if (count = 7) and (CLK’event and CLK="1") then -- Output data
B0 <= A(7);
Bl <= A(6);
B2 <= A(5);
B3 <= A(4);
B4 <= AQ3);
BS <= AQQ);
B6 <= A(l);
B7 <= A(0);
end if;
end loop;
wait on AI,CLK; -- Process activated when sensitivity signal changes
end process;
end BEH;

The input 16-bit data come from Al column by column. The speed of the input data

is controlled by the test bench. Note that the first data that appears is the 8® pixel value

of the first column. In other words, the sequential order of the incoming data is 7, 6,

In this order, the data is pushed down into the correct position, and the 1-2

DCT can be done correctly. After the 1-D DCT computation in Figure 3, the

corresponding spectral coefficients will be put back in the correct order,i.e., 0, 1, 2,...

7. "LOAD" module parallel outputs the data to the second circuit "SHIFT" after eight

clock cycles (count = 7). After that, it processes another new column of data.

28

E. SHIFT-TWO-REGISTER MODEL (SHIFT).

CK
SHIFT

d0 —bi0 boO %00
™ dt —bi1 boi [—sol
d2 —bi2 bo2 %02
CLOCK DELAY d3 —bi3 bo3 303
d4 —bi4 bod4 sS04
d6 —bi5 bo5 r—s0b
d8 — b6 boS 308
! a7 —{0i7 o7 07

CLCK DE

Fig. 6 Shift two register block diagram

The block diagram for SHIFT is shown in Figure 6. There is the second clock
generator with three delay gates. Since the incoming pixel values pass through the
parallel shift register (LOAD), and it causes a delay of one clock cycle, it is necessary
to compensate for this latency by delaying the clock which triggers the shift-two-register
(SHIFT). Another clock which runs twice as fast as ck has been used to trigger the
original clock passing through the delay line. The VHDL source code of this faster clock
is similar to the previously discussed clock generator except the switching period is

twice as fast. The assertion time for termination is therefore twice as long. the delay line

29

consists of shift registers. The VHDL source code of the DELAY and the shift register

is as follows

entity delay is
port(a : bit;b : out bit;CLK : bit); --Normal clock coming in from port

end delay;
architecture beh of delay is
begin
process
variable x : bit;
begin
wait until CLK’event and CLK = ’1’; -- Faster clock controls timing
x := a; -- Shifting the incoming clock
b <=x;
wait on CLK,a;
end process,
end beh;

entity shift is
port(bi0,bil,bi2,bi3,bi4,bi5,bi6,bi7 : in bit_vector(15 downto 0);
bo0,bol,bo2,bo3,bo4,boS5,b06,b07 : out bit_vector(l dewnto 0);
CLK : in bit); -- Port declaration, eight input and output
end shift;
architecture beh of shift is
begin
process
variable I : integer : = 0; -- counter as well as index
begin
for r in 0 to 7 loop
wait until CLK’event and CLK = '1’;
bo0(0) < = bil(I); -- "q" = 0 binary weight
bo0(1) < = bi0(I+1); -- "q" = 1 binary weight
bo1(0) < = bil(l);
bol(l) <= bil(I+1);
bo2(0) < = bi2(I);
bo2(1) < = bi2(I+1);
bo3(0) < = bi3(l);
bo3(1) <= bi3(I+1);
bo4(0) < = bi4(I),
bod4(l) < = bid(I+1);

30

bo5(0) < = bis(l);

boS(1) <= biS(I+1);

bo6(0) <= bib(l);

bo6(1) <= bi6(I+1);

bo7(0) < = bi7(D);

bo7(1) <= bi7(I+1);
I:=1+ 2; -- increment of two

end loop;

I := 0; -- reset the counter for next column of data
wait on CLK,bi0,bil,bi2,bi3,bi4,biS5,bi6,bi7; -- wait for new data

end process;
end beh;

The data are input to the shift register in 16-bit words and output in 2-bit words.

Note that the counter "I" has been used as an index for each data word. Therefore, a

reset (I : = o) is necessary after each column of words are done. Otherwise, the index

would be running out of range, giving a run time error in the VHDL simulation.

F. 2-BIT ADDER/SUBTRACTOR MODEL (ADDSUB)

The 2-bit adder/subtractor module is shown in Figure 7. The "adsu" VHDL source

adsu

.t
ol —4 80 l 0 - b
wt— a1 " o
nl—o a2 2 ol
s & 0 e 008
ot —aq b o | o8
nt 48 (" J Y. J

i

& &

Fig. 7 2-bit add/sub block diagram

code is shown in Appendix A. A simple flow
chart in Figure 8 shows the behavior described
in VHDL. There are eight 2-bit words input
into this circuit. It is necessary to do the
“serial” 2-bit addition or subtraction according
to the expanded Eqs. (30) and (31). Since the

incoming data have been presented in

31

2’complement notation, 2's complement
addition or subtraction should be used. On

the other hand, the 2-bit serial operation

should consider carriers generated

[
fEn &
=1

previously. In other words, the first 2-bit

addition/subtraction might generate a wloms nlims
Fig. 8 "adsu" flow chart

carrier. This carrier must carry on to the

next 2-bit add/sub computation. The simplest way to solve this problem is using a 2-bit
adder accompanied by a register handing the carrier bit for the next addition/subtraction.
For the subtraction case, it is necessary to convert the subtrahend into 2’s complement
notation and then use the same 2-bit adder to accomplish the computation. What has been
done here is to convert the subtrahend into 1’s complement first and then add it to "1"
at the very first subtraction. The incoming subtrahend is just converted into 1’s
complement notation and the adder takes care of the "1" addition. In this way, the serial
subtraction is accomplished. There are four 2-bit adders and four 2-bit subtractors in the
source code. The "cr" bit sets the adder carry at the beginning to zero and the "st" bit
sets the subtractor carry to " 1_". Later on, the adder/subtractor will take care of the carry
by itself. For the convenience of notation, the incoming two 2-bit data and the carrier
bit have been combined into a 5-bit word, and the addition is done in the 2-bit adder

block. There will be more explanation as to how the 2-bit adder block is formed in the

later discussion.

32

G. SHIFT REGISTER

MODEL (REG)

The shift register block
diagram is shown in Figure 9.
Signal 1s input from port a and
output to port b. The shift register
model (REG) VHDL source code

is shown below

entity reg is

reg
co0— a0 b0— do0
col — a1l bl }— doi
c03—-{ a3 b3}— do3
cod — 84 b4 | do4
co5—- a5 b5+ — do5
06 —-{ 86 b6}— dob
co7 — a7 CLK b7}— do7
[ex

Fig. 9 shift register (reg) block diagram

port(a0,al,a2,a3,a4,a5,a6,a7 : bit_vector(l downto 0); -- input port
b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(l downto 0); -- output port

variable d0,d1,d2,d3,d4,d5,d6,d7 : bit_vector(l downto 0);

d0 : = a0; -- Substitute the input signal in a variable

CLK : bit);
end reg;
architecture beh of reg is

begin

process
begin
dl := al;
d2 := a2,
d3 := a3;
d4 .= a4,
d5 := a5;
dé : = a6;
d7 := a7,

wait until CLK’event and CLK = ’1’; -- Clock control
b0 < = dO; -- shift the variable to output signal

bl <= dl;
b2 <= d2;
b3 <= d3;
b4 < = d4;

bS <= d5;

b6 < = d6;
b7 <= d7;
wait on CLK;
end process;
end beh;

This circuit is the simplest one. The only effect of this code is to use a signal
assignment statement to simulate a signal buffer causing a latency period of one clock
cycle. The "wait until CLK’event and CLK = '1’;" statement activates the timing
control. The "wait on CLK" statement activates the process’s operation whenever the

clock changes its state.

H. READ ONLY MEMORY MODEL (ROM)

Figure 10 shows the read only memory block diagram . The VHDL source code
is included in Appendix A. There are eight 2-bit words input to this block, and sixteen
16 X 16 words corresponding to the 1-D DCT multiplication coefficients being read out.
The outputs of four adders with binary weight @ = 0’s and q = 1’s bits form two 4-bit
address bus to access the corresponding ROM multiplication coefficients. The same
situation happens for subtraction. There are sixteen individual ROM locations with
sixteen different values stored in them. Why there are sixteen ROM locations, and why
there are sixteen different values stored in them are discussed in detail in later sections.
Note that in the address assignment part of the source code, the order of the addresses
starts from €0, el, e2, e3 and ends with €7, e6, eS5, e4. This detailed explanation will

also be given in later discussion. The values stored in the individual ROM have been

34

rom

do0 —

dol —/

do2 —

do3 —
do4 —
do5 —
dof —

do7 —

el

el
e2
e3

e5

e7

b10

b11
b20
b21
b30
b31
b40

b41

b50|

bS51
b60
b61
b70

b71
b80

CLK b81

— 01

—e 08

— 014

Ick

Fig. 10 ROM block diagram

35

converted from the sum of coefficients "C,," to 16-bit 2’s complement binary values.

The values of "C,," are calculated according to Eq. (15) and Eq. (16).

SHIFT RIGHT 1-BIT REGISTER MODEL (SHI_1)
Figure 11 shows the shift right 1-bit register block diagram. Its VHDL source code
is included in Appendix A. The shift right 1-bit register receives sixteen 16-bit words and
makes the right shift operation in eight words. It outputs the resultant sixteen 16-bit
words to the next circuit. The only difference between the input and the output values
is that the odd numbered 16-bit words have been shifted right 1 bit position. At the same

time, the original 16™ bit (sign bit) of each odd word has been checked and replaced by

shi_1

el —= f4 b10 — f1
82 — {2 b11 — 2
63 —= {3 b20 — 13
o4 — f4 b21 — 14
5 = f5 b30 —e 5
e6 f6 b31 e 6
o7 — {7 b40 — 17
68— 18 b41 — {8
e11 — f11 b60 — {11
012 — f12 b61}— 12
ei13 — 13 b70 — f13
014 —» f14 b71 —» f14
015 == {15 b80— 15
e16 —| f16 CLK b81— f18
I ek

Fig. 11 Shi_1 register block diagram
a proper bit ("0" or "1", depending on weather it has a positive or negative value) to

properly extend the binary 2’s complement number.
J. ADDER/SUBTRACTOR-G MODEL (ADD_G)

Figure 12 shows the add_g block diagram. It includes one control circuit and five
delay gates. The control circuit enables the add_g to do addition or subtraction. The

purpose of the delay line is to compensate for signal latency. To activate the add/subtract

controller at the right time when signal arrives is a required procedure.

36

CNTROL DELLAY PACK1

0
ct _g‘;. a b q
CLK CLK
add
CL 1 add/sud -9
2: :; b el
B—)
— o4 ® —e
;] o5
s: ot 83 g3
{7 e :: be ot
19— 89
Ro—. «10 b —95
1ol 811
12! €12 8 0
f 1
nt e b7 7
5 e18
18— €18 o) b8 | g8
'd(

Fig. 12 Add_g block diagram
The add_g VHDL source code as well as the control and the delay VHDL source
code are shown below.
entity control is

port(CLK : bit;ct : out bit);
end control;

architecture beh of control is -- control
begin

process
variable i : integer : = 0;
begin
wait until CLK’event and CLK ="1"; -- Clock triggers the circuit
if i = 7 then
ct <= "1"; -- output 1’ every eight clock period
else

ct <="'0%
end if;
1:=1+ 1
37

if i = 8 then
1 := 0; -- Reset the counter
end if;
end process;
end beh;

entity delayl0 is
port(a : bit;b : out bit;CLK : bit);
end delay!0;
architecture beh of delayl10 is -- delay
begin
process
variable x : bit;
begin
wait until CLK'’event and CLK = "1’;
X = a;
b <=x;
wait on CLK,a;
end process;
end beh;

use work.packl.all; -- All the functions in packl are used
entity add_g is
port(al,a2,a3d,a4,a5,a6,a7,a8,29,a10,al1,al12,al3,al4,al5,al6:
bit_vector(15 downto 0); -- input port
bl1,b2,b3,b4,b5,b6,b7,b8 : out bit_vector(15 downto 0); -- output port

CLK,as : bit);
end add_g;
architecture beh of add_g is
begin
process

variable x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,
nl,n2,n3,n4,n5,n6,n7,n8 : bit_vector(15 downto 0);
variable y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,
ml,m2,m3,m4,m5,m6,m7,m8 : integer : = 0;
begin
wait until CLK’event and CLK = '1’;
xl :=al; x2:=a2; x3:= a3; x4 := a4; -- input values
x5 :=as5; x6:=a6; x7:=a7;, x8 := a8;
x9 := a9; x10:= al0; xll:=all; x12 := al2;
x13 := al3; x14 := al4; x15 := al§; x16 := alé;
-- Procedure call to do integer conversion
bi_to_in(x1,y1);bi_to_in(x2,y2);bi_to_in(x3,y3);bi_to_in(x4,y4);

38

bi_to_in(x5,y5);bi_to_in(x6,y6);bi_to_in(x7,y7);bi_to_in(x8,y8);
bi_to_in(x9,y9);bi_to_in(x10,y10);bi_to_in(x11,yl1);bi_to_in(x12,y12);
bi_to_in(x13,y13);bi_to_in(x14,y14);bi_to_in(x15,y15);bi_to_in(x16,y16);
if as = 0’ then
ml:=yl +y2;m2:=y3 +y4;, m3:=y5 + y6; md := y7 + y8;
mS :=y9 + yl0; m6 := yll + yl2; m7 := yl3 + yl4; m8 := y15 +
yl6;
else -- Control gives the subtraction instruction
ml:=yl-y2;m2:=y3-y4;m3:=yS-y6 md:=y7-y8,;
m5 :=y9-yl0; m6 := yll - yl12; m7 := yl3 - y14, m8 : = yl5 - yl6;
end if;
-- Procedure call to do binary conversion
in_to_bi(m1,nl); in_to_bi(m2,n2); in_to_bi(m3,n3); in_to_bi(m4,n4);
in_to_bi(m5,n5); in_to_bi(mé,n6); in_to_bi(m7,n7); in_to_bi(m8,n8);
bl <=nl; b2 <=n2; b3 <= n3; b4 <= n4;
bS <=n§5; b6 <=n6; b7 <=n7; b8 <= n§;
wait on al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3,al4,al5,al6,CLK;
end process;
end beh;

The control is triggered by the clock, and an output of the control bit "ct" is
generated. On the 8" clock period, the "ct” becomes "1" but equals "0" otherwise. The
delay is also triggered by the clock. It receives one bit and outputs the same bit one clock
cycle later.

Add_g has sixteen 16-bit word inputs and eight 16-bit word outputs. It performs
16-bit addition or subtraction. As discussed previously, it is rather complicated to build
up a 16-bit adder/subtractor in a VHDL structural approach. The easiest way is to
convert the 16-bit binary words into integers. In this way, "use work.packl.all" at the
beginning of the entity has to be declared, in order to call the "bi_to_in" procedure in
packl. "Work" represents the working library used, and "packl.all" represents all the
packages being used. After the conversion of binary values to integer values, addition or

subtraction was done according to the control input "as". The results then are converted

39

back to binary values again for output. Of course, the timing is always synchronized by

the clock.
reg_h
K. SHIFT REGISTER-H MODEL o1 a0 b0 — hi
(_H) 63— a2 b2 L h3
The reg_h block diagram is g4— a3 b3 — h4
shown in Figure 13. It functions just g8— 85 b5 —h8
. g7— 86 b6 — h7
like "reg”, except "reg” handles 2-bit B8—a7 ok b7 —h8
words and "reg_h" handles 16-bit lex

Fig. 13 Shift register_g block diagram
words. The VHDL source codes are

the same except for the declaration of the length of bit-vectors.

L. 16-BIT ADDER_I MODEL (ADD_D)

Figure 14 shows the block diagram of the 16_bit adder (ADD_I). ADD_I and
ADD_G are basically the same. ADD_I does not have the "as” control bit or "if”
instruction in the VHDL -ource code to do the subtraction. Another big difference is
that ADD_I is not triggered by the clock. It adds up the two 16-bit inputs with no delay.
It does integer addition with the procedures in packl also. The two inputs come from
REG_H and the feedback output from the SHI 2, which shifts the result to the right by
2 bits. This is shown in Figure 2. The VHDL source code for ADD _I is shown below

use work.packl.all;
entity add i is
port(al,a2,a3,a4,a5,a6,a7,a8,a9,a10,al1,al12,al3,a14,a15,a16:

bit_vector(15 downto 0);
b1,b2,b3,b4,b5,b6,b7,b8 : out bit_vector(1S downto 0));

40

AZIZAZAERFAZAFAZ

add_i
a— ﬁ '
— &7
— 20
— 210 b5 — 16
— 211
— 12 b8 | 18
— ai3
— 213
— 218 b8 e 18
Fig. 14 16-bit add_i block diagram

end add_i;
architecture beh of add i is

begin

process

variable x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,
nl,n2,n3,n4,n5,n6,n7,n8 : bit_vector(15S downto 0);

variable y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13 y14,y15,y16,
ml,m2,m3,m4,m5,m6,m7,m8 : integer : = 0,

begin

xl :=al; x2:=a2; x3:= a3; x4 := a4;

x5 :=2a5; x6:= a6; x7:=a7; x8 .= a§;

x9 :=a9; x10:= al0; xil:=all; x12 := al2;

x13 := al3; x14 := al4; x15 := al§; x16 := alé6;

bi_to_in(x1,y1);bi_to_in(x2,y2);bi_to_in(x3,y3);bi_to_in(x4,y4);

bi_to_in(xS5,y5);bi_to_in(x6,y6);bi_to_in(x7,y7);bi_to_in(x8,y8);

bi_to_in(x9,y9);bi_to_in(x10,y10);bi_to_in(x11,y11);

bi_to_in(x12,y12);

bi_to_in(x13,y13);bi_to_in(x14,y14);bi_to_in(x15,y15);

bi_to_in(x16,y16);

41

yl + y2;m2:=y3 + y4; m3 := y5 + y6; md := y7 + y8;
y9 + yl0; m6 := yll + y12; m7 := yI3 + yl4; m8 := yI5

ml :
mS :
+ yl6;

in_to_bi(ml,nl); in_to_bi(m2,n2); in_to_bi(m3,n3); in_to_bi(m4,n4);
in_to_bi(m5,n5); in_to_bi(m6,n6); in_to_bi(m7,n7); in_to_bi(m8,n8);
bl <=nl; b2 <=n2; b3 <=n3; b4 <= nd4;

bS5 <=n5; b6 <=n6; b7 <=n7;, b8 <= n8;

wait on al,a2,a3,a4,a5,a6,a7,a8,a9,a10,all,al2,al3,al4,al5,al6;

end process;
end beh;

M. SHIFT RIGHT 2-BIT REGISTER MODEL (SHI_2)

shi_2

sl j—e 11
1 — a 812 a2
CLOCK DELAY s3 13
12 — a2 st4 p—erd
sr5 15
sr7 =17
—_— b1 t— i

i a8 b3 —
i6 = ba — 4
[7 —e a7 b5)5
b8 I8
|8 —o a8 b7 —=17

b8

CLCK CLK cir —J8
| _ lho [

Fig. 15 Shift right 2-bit register block diagram

The shift right 2-bit register (shi_2) block diagram is shown in Figure 15. It
includes another clock generator running two-times faster to trigger the delay unit which

delays the normal clock by one period. It has another clear line (clr) from the test bench

42

that clears the register every eight clock cycles. The VHDL source code of SHI_2 is
shown in Appendix B.

The SHI_2 model has eight 16-bit word inputs from ADD_I and has sixteen 16-bit
word outputs. The input values have been checked for the sign bit, and the SHI_2 shifts
the data 2 bits to the right in proper 2’s complement representation. There are eight
blocks in the SHI_2 module. The results are updated and fed back to ADD_I module to
perform an addition with the incoming data values. In every 8® clock cycle, the results
are parallel shifted to the "parallel load serial shift" register (RESULT). During the same
cycle, the shift right 2-bit results are cleared, and the SHI_2 is ready for the next column

operation.

N. PARALLEL LOAD SERIAL SHIFT REGISTER MODEL (RESULT)

The block diagram of the parallel load serial shift register (RESULT) is shown in
Figure 16. There are eight inputs from SHI_2; RESULT puts out only one value at a
time. The VHDL source code of RESULT is shown below,

entity result is
port(al,a2,a3,ad,a5,a6,a7,a8 : bit_vector(15 downto 0);
k : out bit_vector(15 downto 0);CLK : bit);
end result;
architecture beh of result is
type r is array (0 to 7) of bit_vector(15 downto 0);

begin
process
variable x : r;
begin
x(0) := al; x(1) := a2; x(2) : = a3; x(3) : = a4;
x(4) := a5; x(5) := a6; x(6) := a7; x(7) : = a8;

for i in O to 7 loop
wait until CLK'event and CLK = '1’;

43

RESULT

Ji __af
J2 ___,a2
J83 __.a3
J4 __ a4 k ~P
J5 _.ab
J6 ___ab
J7 a7
J8 __.a8
CLK
=
Fig. 16 Parallel shift serial output register block diagram
k <= x(i);
end loop;
wait on al,a2,a3,a4,a5,a6,a7,a8,CLK;
end process;

end beh;

Eight 16-bit words are input into RESULT every 8" clock cycle. They are pushed
out one value at a time at every clock period. After all eight values have been output,

new values are fed in again for the next cycle.

44

O. TEST BENCH

The Test bench block diagram is
shown in Figure 17. It actually
includes all the intermediate signals,
the control signals, and the input and
output signals. The VHDL source code
for the test bench is shown in

Appendix B. All the components used

in the system have been declared and ¥ig- 17 Block diagram of Test Bench

instantiated. The signals used for the simulation are declared also. Configuration
statement binds all the components to the test system. The input pixel values are fed into
the system through "di", and it is simulated. The results of the simulation are collected

by signal ‘p". A table of the simulation results "p" is generated and analyzed to see if

the design is functioning correctly.

45

TEST BENCH
di dr set o P
S S
DESIGN CIRCUIT

V. SIMULATION OUTPUT ANALYSIS AND EXPERIENCE

A. FORMATION OF ROM STORAGE VALUES
As discussed before, there are only sixteen-word ROM for each multiplication

coefficient due to the symmetry in DCT. The coefficients can be calculated according to

Eq. (15) and Eq. (16).

Table I: Multiplication Coefficients

m=0 m=1 m =2 m=3
C., k = even
A= Y,+Y, B=Y,+Y, C =7Y,+Y; D =Y;+Y,
.3535533905 .3535533905 3535533905 | 0.3535533905 k=0
.4619397662 1913417161 | -.1913417161 | -.4619397662 k=2
.3535533905 | -.3535533905 | -.3535533905 | .3535533905 k=4
1913417161 | -.4619397662 | .4619397662 | -.1913417161 k=6
C.u k= odd
A =Yy,Y, B =YY C=YyYs D =YYy, \
.4903926402 4157348061 2777851165 .0975451610 k=1
4157348061 -.097545161 | -.4903926402 | -.2777851165 k=3
2777851165 | -.4903926402 | 09754516101 | .4157348061 k=35
.0975451610- | .2777851165 4157348061 | -.4903926402 k=7

Since N = 8, the expanded equation of Eq. (30) and Eq. (31) can be derived as in Table

[after substituting the proper index (m, k). The labels U0, U2, ..., V7 are included in

46

the table for better understanding. Labels A, B, C, D stand for bit patterns. For example,
ifA=1,B=0, C=1,D = 1, then the values in column 1, 3, and 4 should be
summed up to get the corresponding multiplication coefficient sum stored in the ROM.
The bit pattern in the circuit has two weighted groups (LSB group q = 0’s, and MSB
group q = 1's). The coefficient values for these two patterns are exactly the same.
Therefore, there are only 8 X 16 = 128 different coefficient sums stored in ROM.
One very important fact must be stressed. Are the values stored in the ROM
decimal numbers? The answer is obviously no. The values are stored in the ROM as
binary numbers. How can these summed decimal numbers be converted into binary
numbers? Upon inspection of Table I, it is noted that the largest possible decimal
number generated is not greater than 2. The smallest possible decimal number generated
is not lesser than -2. As stated before, the number system used here is 16-bit 2’s
complement number. Therefore, one sign bit, one digit bit, and fourteen fraction bits are
chosen to represent the binary numbers stored in the ROM. All the decimal coefficients
calculated according to the specific bit pattern A, B, C, D have to be converted into
binary 2°s complement 16-bit numbers. This conversion operation is carried out with the
help of a small program written in Matlab listed in Appendix C. The actual values stored

in the ROM are shown in the ROM VHDL source code.

B. SIMULATION AND TESTING IMAGE PATTERN ()
The first image pattern being used is shown in Figure 17. It is a two-dimensional

cosine wave with intensity varied along x-axis. The pixel value can be represented in 128

47

/1
/|

RRRRRRR
I

NN NNNN

daaaas
NNNNNN

?///////

ndddads

2 3 4 5 6 7

Fig. 18 Pattern (I) 8 x 8 image block

levels. Therefore, the pixel value of each point in this image can be represented from the

following formula

f(xy) = [cos@nfx + 2nfy) + 1]/ 2 x 128 (32)

where f, = 1/4, f, = 0.
After substituting the corresponding index (x, y) in Figure 17 into Eq. (32), the pixel
values represented in this 8 X 8 image block can be shown in Table II. The 12-bit binary
representations of decimal numbers 128 and 64 are "000010000000" and

"000001000000". Converting the values in Table Il into 12-bit binary numbers and taking

48

Table IT: 8 x 8 image pixc! values of Pattern (I)

y = 128 64 0 64 128 64 0 64
-

y = 128 64 0 64 128 64 0 64
6

y = 128 64 0 64 128 64 0 64
5

y = 128 64 0 64 128 64 0 64
4

y = 128 64 0 64 128 64 0 64
3

y = 128 64 0 64 128 64 0 64
2

y = 128 64 0 64 128 64 0 64
1

y = 128 64 0 64 128 64 0 64
0

x=0]x=1}1x=2]|x=3x=4|x=5|x=6{x=7

them column by column into the 1-D DCT VHDL model yields the corresponding 1-D
DCT spectral
coefficients (in Hex) as listed in Table III. The same decimal values in Table II has also
been put into a 1-D DCT subroutine for calculation which is in a image processing
library called spider. The result is shown in Table IV.

Due to the time limitations, the attempt to carry out the transpose of the 1-D DCT
coefficients in VHDL behavior models was not made. However, manual transpose is
done instead. Transposed 1-D DCT coefficients of pattern (I) in VHDL simulation is

shown in Table V. The values in Table V are converted again into binary numbers and

49

Table II: 1-D DCT spectral coefficients of Pattern (I) in VHDL simulation

0B50 05A8 0000 05A8 0BS5S0 05A8 0000 05A8
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Table IV: 1-D DCT coefficients of pattern (I) using Spider Subroutine

362.03 | 181.01 0 181.0 | 362.03 | 181.01 0 181.01
1

(=3 Kol Nl Ko R Nl Nl R
O[O |0 |©OC O O |O
S || |C O |Q|O
O o ||]O |JO |O
O || |JOo O |OC|O
S |O o | |C O |O
(= Nl Nl No Rl K=l Nl Ko
O | |QC OO0 |0 |

input column by column into the 16-bit 1-D DCT VHDL model to accomplish the 2-D
DCT operation. The 2-D DCT spectral coefficients which have been transposed back in
the VHDL simulation are shown in Table VI. The 1-D DCT operations in the VHDL

simulation is based on integer calculation. In order to prove that the 1-D DCT VHDL

50

Table V: Transposed 1-D DCT coefficients of pattern (I) in VHDL simulation

OBSO | 0000 | 0000 | 0000 | 0000 0000 0000 0000
05A8 | 0000 { 0000 0000 0000 0000 0000 0000
0000 | 0000 | 0000 | 0000 | 0000 0000 0000 00000
05A8 | 0000 | 0000 0000 0000 0000 0000 0000
0B50 | 0000 [0000 | 0000 | 0000 0000 0000 0000
05A8 | 0000 | 0000 0000 | 000G 0000 0000 0000
0000 | 0000 | 0000 | 0000 0000 0000 0000 0000
0SA8 | 0000 | 0000 } 0000 | 0000 0000 0000 0000

Table VI: 2-D DCT spectral coefficients of pattern (I) in VHDL simulation

—

O01F7 | OOSF 0000 | 00C4 | OOFF | FF7C 0000 FFED
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

simulation result is correct, the values in Table V are converted into integers and are
shown in Table VII. The values in Table VII is again calculated column by column using
the spider 1-D DCT subroutine. Its 2-D DCT spectral coefficients are transposed and

shown in Table VIII.

51

Table VII: Table V in integer values

2896
1448

1448
2896
1448

(=3 R N B N R Nl No il § ol N
O | OO |C | ||
(=3 N2 Rl KRt Kol Ne R N R N
O O O | |Jo o |Oo |
(=3 Nl Nl Fo il Fo il Ho il No B 1=
O |0 O |O oo o o
O |0 |0 ||| o |O

1448

Table VIII: 2-D DCT spectral coefficients of pattern (I) using Spider Subroutine

4095.5 | 768.54 0 1573.0 | 2047.7 | -1051.0 0 -152.8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

To ensure that the 1-D DCT structural calculation in the VHDL simulation is
correct , direct 1-D DCT calculation on a calculator is also carried out based on
Eq.(15), and Eq.(16). Equations (33) and (34) show the calculation example for k = 0

and k = 1.

52

C) = —\/1—_(28964- 1448 +0+1448 +2896 +1448 +0 +1448)
8

ca)- P(zs%cos-"— +1448c0s 3% +0+1448cos L~
8 16 16 16

+2896cos91—2 +1448c0s 1116" +0+1448cos 0T

16

(33)

(34)

The results using this approach are listed in Table IX. Note that the results of Table VIII

and Table IX are very close.

Table IX: 2-D DCT coefficients of pattern (I) using direct calculation

4095.5 | 768.59 0 1537.0 | 2047.7 | -1051.0 0 -152.8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

It is also necessary to trace the operation in the VHDL structural models shown in

Figure 2. To understand the structural operation and calculation of the 1-D DCT in the

VHDL simulation in more detail, a manual derivation and calculation are carried out for

53

Table X 16-bit binary number representation of table (V)

Slice(0) 0000101101010000
Slice(1) 200010110101000
Slice(2) 0000000000000000

Slice(3) 0000010110101000
Slice(4) 0000101101010000
Slice(5) 0000010110101000
Slice(6) 0000000000000000
Slice(7) 0000010110101000

[l ol fo il Fo i ol E = Nl N =
[« KRN N NeR e e B ol o)
O | jojo | jo o |o
(=l Nl Ho il Ho il Kol K= Ry N o
(=1 K=l Nl ol ol Kol f ol N
O || || |0 |e O
(=2 F=ll ol No il Ho il Nl R N =

the purpose. First the values in Table V need to be converted into binary numbers, which
are shown in Table X. It is clear that only one column of Table X is not zero. Therefore,
there is only one column of the 1-D DCT that needs computation. The values in the first
column are input into the 1-D DCT VHDL model which yields the serial 2-bit
addition/subtraction results as shown in Table XI.

The first column in Table XI shows how the 2-bit addition/subtraction is done. The first
row on the top represents the clock cycle. The rows in the upper-half (U) correspond
"k" equal to even numbers, and the rows in the lower-half (V) correspond "k" equal to
odd numbers. Each half column has four bits, forming a bus to address the corresponding
ROM coefficients. For example, at the first clock cycle, there are two 4-bit buses. The
four least significant bits (LSB) form an "ABCD" corresponding to "0000" bus to address
the "UOO" (refer to Fig. 2) ROM value. This yields the value "0000000000000000" as

output. The MSBs of the first clock cycle addresses the "UQ]" ROM valu

54

Table XI: Serial 2-bit addition/subtraction output

R AR AR A
Slice(0+7)] 00 | 01 00 | 00 | 11 |11] 10 [00| A
Slice (1+6)] 00 | 00 | 01 {01 |10 | 10 | 10 | 00| B
Slice(2+5)] 00 | 00 | o1 | 21 |10 {10 |10 | 00| C
Slice@3+4| 00 | 01 {00 {00 |11 |11 {10 | 00 | D
Slice (3-4‘ 11 |11 1 01 10 | 01 | 01 | 10 | OO D
Slice (2-5)| 11 |11 |01 1001 |01 10| 00]| C
Slice(1-6)] 00 | 00 | 10 | 0f | 10 |10 | 10 | 00 | B
Slice(0-7)| 00 | 00 | 10 | 01 | 10 |10 | 10 | 00| A

"0000000000000000" out. It then adds up with the 1-bit right shifted value of "UQQ".
This result i1s stored in REG_H and then 2-bit right-shifted in the SHI 2 register. The
first clocked 2-bit right-shifted word is then fed back to ADD I and added to the second
clocked result "0101101010000010". The procedure of getting this second clocked result
is just the same as that of getting the first clocked result. The summation of the first 2-bit
nght-shifted number and the second clocked result "010110101000010" is then shifted
night 2 bits, yielding "0001011010100000". This value is then added to the third clocked
result "0111000100100010", yielding "1000011111000010". This process goes on
serially until the 8* clock cycle is reached. The addressed output ROM value of the MSB

of the 8* clock cycle "0000000000000000" is subtracted from the right-shifted 1-bit

55

Table XII 2-D DCT coefficients of pattern (I) using manual calculation

Q0000011111111 | 0000000001011111 | 0G00G00000030000 | 000000001 1000100 | G030AK11111111 | 1111111181111100 | HOG0000000000008 | 1111111111010

0 0 0 0 0 0 0 0

0 | 6 | 0 | o | o | 0o | 0| o0
o | 0 | 0 | o0 | 0 | o | O O
o | o o | o | 0 | o | 0] O

addressed ROM value of the LSB of the 8 clock cycle "0000000000000000". This result
is then added to the previous accnmulated 7 clocked values, yielding
"0000011111111111". This final result is then right shifted 2 bits, yielding
"0000000111111111" and output as the first pixel 2-D DCT coefficient of the first
column. 8 X 8 image block of the 2-D DCT coefficients pattern I using structural
manual calculations are shown in Table XII. The detailed calculation procedure is listed
in Appendix D. Note that the summation of the accumulated two clocked values and the
third clocked result generates an overflow. This overflow will eventually generate a
negative value when right-shifted 2 bits. This is a inherent drawback of using 16-bit

integers arithmetics.

56

C. SIMULATION AND TEST OF IMAGE PATTERN (II)

Image pattern II is equal to image pattern [rotated by 45°. The following formula

was used to calculate each pixel value.

- Ly + 2 Lymy) +
fxy = [cos(2n(4T)Tx 2n(41)7y) 11/2 x 128

(35)

Table XIII: 8 x 8 image block pixel values of pattern (II)

7 64 128 64 0 64 128 64 0
6 0 64 128 64 0 64 128 64
5 64 0 64 128 64 0 64 128
4 128 64 0 64 128 64 0 64
3 64 128 64 0 64 128 64 0
2 C 64 128 64 0 64 128 64
1 64 0 64 128 64 0 64 128
0 128 64 0 64 128 64 0 64
0 1 2 3 4 5 6 7

The 8 X 8 image block pixel values of pattern II represented in decimal numbers are

shown in Table XIII. The 2-D DCT of pattern II has been calculated in two ways,

VHDL simulation and spider subroutine. Using VHDL simulation first, Table XIII is

converted into binary numbers and is input column by column into the VHDL 1-D DCT

test bench. Its 1-D DCT coefficients is shown in Table XIV. For 2-D DCT, the values

57

Table XIV: 1-D DCT coefficients of pattern (II) using VHDL simulation

Ol6A | O16A | 016A | 016A | O16A | Ol6A | 016A | Ol6A
FFBB | 0043 | 0043 | FFBB | FFBB | 0043 | 0043 | FFBB
0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
FF74 | O08A | O08A | FF74 | FF74 | 008A | O08A | FF74
00B5 | 00BS | FF4A | FF4A | 00BS | O00BS | FF4A | FF4A
005D | FFA2 | FFA2 | 005D | 005D | FFA2 | FFA2 | 005D

N Wl N3

0 000D | FFF2 | FFF2 | 000D | 000D | FFF2 | FFF2 | 000D

in Table XIV are then transposed manually, and the results are input into the 16-bit
VHDL 1-D DCT test bench. The 2-D DCT spectral coefficients fo- ittern II in VHDL
simulation are listed in Table XV.

Table XV: 2-D DCT coefficients of pattern (II) using VHDL simulation

7 Q0SF | 0000 [0000 | 0000 | 0000 | 0000 | 0000 | 0000
6 FFFF | 0000 [0000 | 0000 | FFE7 | 0000 | 0000 | 0020
5 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
4 FFFF | 0000 | 0000 | 0000 | FFCE | 0000 | 0000 | 0000
3 F555 | 0017 | 0000 | 0031 | 0000 | FFDE | 0000 | FFFC
2 FFFF | 0000 | 0000 | 0000 | 0020 | 0000 | 0000 | 0000

0 FFFF | 0000 | 0000 | 0000 | 0005 [0000 | 0000 | 0000

58

Table XVI: Pattern II 1-D DCT coefficients using Spider Subroutine

7 | 181.0 181.0 181.0 | 181.0 | 181.0 | 181.0 | 181.0 | 181.0
6 | -33.97 | 33.97 33.97 - - 33.97 | 33.97 -
33.97 | 33.97 33.97
5 0 0 0 0 0 0 0 0
4 | -69.53 | 69.53 69.53 - - 69.53 | 69.53 -
69.53 | 69.53 69.53
3| 9051 90.51 | -90.51 - 90.51 | 90.51 | -90.51 -
90.51 90.51
2 | 46.46 | -46.46 | -46.46 | 46.46 | 46.46 - -46.46 | 46.46
46.46
1 0 0 0 0 0 0 0 0
0| 6.757 | -6.757 | -6.757 | 6.757 | 6.757 - -6.757 | 6.757
6.757
0 1 2 3 4 5 6 7

1-D DCT subroutine in Spider is used to double check the VHDL simulation
result. Values in Table XIII are calculated column by column, and its result is listed in
Table XVI This result is compared with that of Table XIV for verification.

2-D DCT floating point calculation is also used to check the VHDL simulation.
Again for the same reason of comparison, values in Table XIV are chosen and converted
into integers. After the Hex-integer conversion, these values are transposed again and
calculated by 1-D DCT Spider subroutine column by column. The results are shown in

Table XVII.

59

Table XVII: 2-D DCT coefficients of pattern (II) using floating point calculation

7 1023.9 0 0 0 0 0 0 0
6 -2.828 0 0 0 -192.3 0 0 0
5 0 0 0 0 0 0 0 0
4 -2.828 0 0 0 -393.2 0 0 0
3 -1.414 192.7 0 394.4 0 -263.5 0 | -38.33
2 -1.414 0 0 0 264.5 0 0 0
1 0 0 0 0 0 0 0 0
0 [-1.414 0 0 0 38.18 0 0 0
0 1 2 3 4 5 6 7

D. RESULT ANALYSIS

There are four methods being used to prove the accuracy or the VHDL structural
1-D DCT in vHDL simulation. Comparing Tables VI, VIII, IX, and XII, the
similarities among them are obvious. Tables VIII and IX are almost the same while
Tables VI and XII need to be converted into decimal numbers for ease of comparison.
Table VI needs to be converted into 16-bit binary values first, then using the definition
of the 16-bit binary number system (1 sign bit, 1 integer and 14 fraction bits) to convert
the binary words into decimal numbers.

The multiplication factor as to how many times the number is being right-shifted
here is 2'7. The equivalent integer values of Table VI and Table XII are shown in Table
XVIII and XIX. Most of the pixel values are similar to those in Table VIII and IX with
a few differences. There are two reasons that can explain this phenomenon. First, there

is a limitation in 16-bit binary number representation. Those fractional numbers that are

Table XVIII Equivalent decimal numbers of table (VI)

4024 760 0 1568 2040 -1056 0 -152
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table XIX Equivalent decimal numbers of table (XII)

4088 760 0 1568 2040 -1056 0 -160
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

smaller than 2'* are truncated. This will cause small difference between Table VI,XII
and Table XVIII, XIX. The second reason is due to the overflow situation. The
accumulated sum of he coefficients might be greater than the biggest number that a 16-
bit binary number system could represent. This overflow situation will cause larger

difference between Table VI, XII and Table XVIII, XIX.

61

A way is found to indicate the overflow situation. Checking can be made in
ADD_G and ADD I by adding the following VHDL source code right after the integer
to binary number conversion.

if ((x,(15) = 1’ and x,(15) = ’1’ and n,(15) = ’0’) or

(x,(15) = ’0’ and x,(15) = ’0’ and n,(15) = ’1’)) then
overl <="1°%

if ((x5(15) = '1’ and x,(15) = ’1’ and n,(15) = ’0’) or

(x4(15) = ’0’ and x,(15) = 0’ and n,(15) = ’1’)) then

over2 <= 1%

if ((x,5(15) = 1’ and x,((15) = ’1’ and ng(15) = ’0’) or
(x,5(15) = ’0’ and x,((15) = ’0’ and ng(15) = ’1’)) then
over§ <=1’
)7 course, at the port declaration, a special signal declaration must be made in order to
notify the test bench about this overflow condition. VHDL source code for the port
declaration is shown below.
port(-—;bl,b2,b3,b,b5,b6,b7,b8 : out bit_vector(15 downto 0);
overl,over2,over3,overd,overS,over6,over7,over8 : out bit;
CLK : bit);
rddition to the port modification, the test bench component’s port also needs to be

modified. the last thing to accomplish in signaling this overflow condition is to declare

62

signals and unable the "port map" to receive the overflow signal coming from ADD_G

and ADD_I. VHDL source code is shown below.

signal ovl,ov2,0v3,0v4,0vS5,0v6,0v7,0v8 : bit;

g : add_g port map(f1,f2,f3,f4,f5,f6,£7,£8,19,f10,f11,f12,13,14,f15,116,

gl,g2,23,24,85,26,27,28,ck,qo,0v1,0v2,0v3,0v4,0v5,0v6,v07,v08);

i : add_i port map(hl,rl,h2,r2,h3,r3,h4,r4,r4,hS,r5,h6,r6,h7,r7,h8,r8,

i1,i2,i3,i4,is,i6,i7,i8,ck,ovl,ov2,0v3,0vd4,0v5,0v6,0v7 . 0v8);

Whenever the overflow bit "ov#" changes to '1’, it indicates that particular pixel value

has experienced overflow.

E. EXPERIENCE

My experience in the work can be listed as follows.

1. Input Data Sequential Order error
The sequential order of input pixels which are input to the parallel shift
register was assumed to be 7, 6, ...0. According to the transposed sequence, the actual
input data should be in the order of 0. 1, 2,...7. Therefore, there would be an error if
the sequence of the transposed data is not reversed. This means that another reverse

circuit should be added between the transpose circuit and the input "load” circuit. But,

63

it is rather complicated to add an extra circuit. The easiest way to solve this problem is
to input the data in the order of 0, 1,...7 and switch the subtrahend connections (0-7, 1-
6, 2-5, 3-4) in the 2-bit adder/subtractor circuit. In this way, the order of input data and
output data are always in the order of 0, 1, 2,... 7 and it is not necessary to add an extra

circuit.

2. Formation of 2-bit Adder in VHDL source code
The interface of a 2-bit adder has five inputs (two for the adder, two for the
addend, and one for the carrier), three outputs (two for the addition result, and one for
the carrier). Thus, a truth table involving all possible input combinations can be made.
There are five inputs, therefore 2° = 32 combinations will occur. After building up an
8 X 32 truth table, Karnaugh map reduction can be used to minimize the complex
expression in boolean algebra. It is the boolean algebra expression which is used in the

VHDL source code. There is a detailed example listed in Appendix F.

3. No Timing control in Add_i Model
Almost every circuit needs a clock to trigger and control the sequential
process. ADD I is a special adder circuit without a triggering clock. As mentioned
earlier, the accumulator of the serial bit result consisis of ADD_I and SHI_2. ADD I is
used to add up the incoming clocked result with the latest accumulated result right after
right-shifting by 2 bits. If these two circuits are triggered by the clock, then there will
be a time delay of one clock cycle between ADD_I and SHI_2. In other words, ADD_I

is adding the incoming clocked result with the accumulated right-shifted 2-bit result from

one clock cycle earlier, rather than the latest. This will cause an error in the output
coefficients. The method to remove of this time delay of one clock cycle between ADD _I
and SHI_2 is to allow only one clock to trigger this accumulator. Another alternative
considered is to use the clock to trigger ADD_I instead of triggering SHI_2. However,
the experiment shows that this cannot be done, since SHI_2 has to be cleared on every
8® clock cycle, and this clearing needs a counter to calculate the exact time. On the other
hand, SHI_2 is to output the correct accumulated result every 8® clock period. These two
factors both need a clock to control the timing. This is why ADD_I was chosen not to

be triggered by the clock.

4. "Set" control in Test Bench

It is strange enough that the "set” control in the test bench does not get the
value ’1’ at the beginning of simulation. The function of "set” is to initiate all the
subtractor’s carriers in "adsu” to '1’ in order to accomplish the subtraction. This
initiation is performed only once. The carrier of the subtractor is then carried over ali
by itself. That is to say, the carrier is a variable in "adsu”. This carry variable is initiated
by the "set” first and will be influenced by the "set” at subsequent times if modification
of the signal "set" is not made. Fortunately, "set" has to change only once from '0’ to
"1 at the beginning of the simulation. Therefore, an "event" instruction causes "set" to
be a sensitivity signal. Since "set” changes only once, it will not have any further
influence on the carrier variable. O:her than this, the time for "set” to change its state
is very important. the clock is ‘0’ at the beginning of the simulation and changes its state

to '1" after S ns. If "set” changes its state other than at 5 ns, the subtraction result will

65

be wrong. Only when "set" changes its state at 5 ns will the result of subtraction be

correct.

§. Signals cannot be used as variables in VHDL
In solving the problem mentioned in previous section, efforts have been made
to use the "set" signal directly as a variable within the process. This certainly will yield

a syntax error doing compilation of the source codes.

6. Preventing Negative Zero occurrences in Packl

There is a paragraph of source code added to packl at the end of "in_to_bi"
when negative zeros found duning the simulation. When these negative zeros arrive at the
gate of shi_2, they will generate very large negative numbers and cause an error at the
output. This unwanted situation has teen taken care of by adding source code to check
for negative zeros at the end of the integer-binary conversion procedure. Although this
extra checking source code works fine, it means an extra circuit must be added. This
is not the goal in circuits design. A close inspection of in_to_bi source code has been
made and a very small mistake has been found. At the beginning of inverting the bit
stream into 2’s complement codes, positive or negative integers is checked in order to
assign the correct sign bit "w(15)" for the converted binary number. It is found that
"w(15) := "0’" is only assigned to the situation when "m > ’0’". The other values are
all assigned with "w(15) := '1'". This is how negative zeros are generated. Had the
source code "m > '0’" been changed to "m > = '0’", the extra negative zero checking

codes would not be necessary.

VI. CONCLUSION

The main objectives of this thesis, using the VHDL to describe a 1-D DCT
structural architecture of a 8 X 8 image block and simulating it on a workstation, have
been reached. The basic theory of 1-D DCT, the principle of distributed arithmetic and
the actual hardware architecture have been made more clear in the VHDL simulation.
Above all, the experience of using the VHDL to describe an algorithm and the simulation
of the VHDL is obtained. Although getting familiar with the language and its simulation
has been time-consuming, the benefits of the signal tracing and the time modeling have
been demonstrated in this thesis. VHDL itself is a portable document and a hierarchical
language. Therefore, this thesis can be adopted in other more complicated design.

Despite the fact that the VHDL simulation result of integer point calculation is not
as precise as floating point calculation, the resultant energy spectrum of 1-D DCT is
already good enough to recover the original image block. Besides, absolute value
accuracy is not important for image compression. It is the relative value between pixel
points that matters. Another point worthy to mention is that the approach in this thesis
has the advantages of calculation speed, since the hardware for floating point calculation
is much more complicated than that for integer point calculation.

There is still a very important module that was not described, the transpose
module. The transpose module can be connected to the test bench and fulfill the

automatic 2-D DCT simulation.

67

The simulation done here is only the initial part of the "top-down design" process.
The algorithm of an 8 X 8 image block 2-D DCT in VHDL behavior description was
implemented. This behavior description can be further developed into gate level

descriptions. Once reached the gate level, the hardware circuit implementation can be

realized.

68

APPENDIX A. 12-BIT 1-D DCT VHDL SOURCE CODES

Normal clock generator
entity clock ge is
port(CLCK :inout bit);
end clock_ge;
architecture clk_ctl of clock_ge is
begin
process(CLCK)
variable I : integer : = 0;
begin
CLCK < = not CLCK after S ns;
I:=1+ 13
assert | <= 80
report "job done"
severity Error;
end process;
end clk_ctl;

Serial load parallel shift register
entity LOAD is
port (Al : in bit_vector(11 downto 0); B0,B1,B2,B3,B4,B5,B6,B7 : out bit_vector(11
downto 0);CLK : in bit);
end LOAD;
architecture BEH of LOAD is
type shift is array(0 to 7of bit_vector(11 downto 0);
begin
process
variable A : shift;
variable I,count : integer := 0;
begin
wait until CLK’event and CLK = ’1’;
for count in 0 to 7 loop
wait until CLK’event and CLK = ’1’;
for I in 0 to 6 loop
A := A(I+1);
end loop;
AT := AL
if (count = 7) and (CLK’event and CLK="1") then
B0 <= A(7);
Bl <= A(6);

69

B2 <= A(5);

B3 <= A4);
B4 <= AQ3);
BS <= A(Q2);
B6 <= A(1);
B7 <= A(0);
end if;
end loop;
wait on AI,CLK;
end process;
end BEH;

Twice faster clock generator

entity clock is
port(CLK :inout bit := ’1’);
end clock;
architecture beh of clock is
begin
process(CLK)
variable I : integer := 0;
begin
CLK < = not CLK after 2.5 ns;
I[:=1+ 1
assert I <= 160
report “job done"
severity Error;
end process;
end beh;
ceeeeenen Delay gate
entity delayl10 is
port(a : bit;b : out bit;CLK : bit);
end delay10;
architecture beh of delay10 is
begin
process
variable x : bit;
begin
wait until CLK’event and CLK = ’1’;
X := a;
b <=x;
wait on CLK,a;
end process;
end beh;

Parallel shift out 2-bit register

70

entity shift is
port(bi0,bil,bi2,bi3,bid,biS,bi6,bi7 : in bit_vector(11 downto 0);
bo0,bol,bo2,bo3,bo4,boS5,b0o6,bo7 : out bit_vector(l downto 0);
CLK : in bit);
end shift;
architecture beh of shift is
begin
process
variable I : integer := 0;
begin
wait for 90 ns;
for r in 0 to 5 loop
wait until CLK’event and CLK = ’1’;
bo0(0) < = bi0(D);
bo0(1) <= bi0(I+1);
bol(0) <= bil(D;
bol(1) <= bil(I+1);
bo2(0) <= bi2(D;
bo2(1) <= bi2(I+1);
bo3(0) <= bi3(D);
bo3(1) <= bi3(I+1);
bod4(0) <= bi4(D;
bod(l) <= bid(I+1);
boS(0) <= bi5s(D;
bo5(1) <= biS(I+1);
bo6(0) < = bi6(I);
ho6(1) <= bi6(I+1);
bo7(0) < = bi7(I);
bo7(1) <= bi7(I+1);
I:=1+ 2
end loop;

I:= 0;
wait on CLK,bi0,bil,bi2,bi3,bid4,bi5,bi6,bi7;
end process;
end beh;
2-bit adder/subtractor

entity adsu is
port(a0,al,a2,a3,a4,a$,a6,a7 : bit_vector(l downto 0);
b0,b1,b2,b3,b4,b5,56,b7 : out bit_vector(l downto 0);
CLK,cr,st : bit);
end adsu;

71

architecture beh of adsu is
begin
process
variable cl,c2,c3,c4,c5,c6,¢7,c8 : bit_vector(4 downto 0);
variable d1,d2,d3,d4,dS5,d6,d7,d8 : bit_vector(2 downto N);
variable el,e2,e3,ed,e5,e6,e7,e8 : bit;
begin
wait until CLK’event and CLK = ’1’;
if cr’event then
el :=cr;e2:=cr;ed:=cr;ed := cr;
end if;
if st’event then
eS := st; e6 := st; e7 := st; e8 := st;
end if;

cl(0) :
cl(l) :
cl2) :
cl3):
cl@) :
d1(0) :

el;

a0(0);

al(1);

a7(0);

a7(1);

(c1(1) and (not ci(3)) and (not c1(0)))

or (not c1(1) and c1(3) and (not c1(0)))

or (not c1(1) and (not c1(3)) and c1(0))

or (c1(1) and c1(3) and c1(0));

di(1) := (not c1(2) and not c1(1) and c1(4) and not c1(0))
or (not c1(2) and c1(4) and not c1(3) and not c1(0))
or (c1(2) and not c1(4) and not c1(3) and not c1(0))
or (c1(2) and not c1(1) and not c1(4) and not c1(0))
or (not c1(2) and c1(1) and not c1(4) and c1(3))
or (c1(2) and c1(1) and c1(3) and c1(4))
or (not ¢1(1) and not c1(2) and c1(4) and not c1(3))
or (not cl1(1) and c1(2) and not c1(3) and not c1(4))
or (c1(1) and not c1(2) and not c1(4) and c1(0))
or (not c1(2) and not c1(4) and c1(3) and c1(0))
or (c1(2) and c1(3) and c1(4) and c1(0))
or (c1(2) and c1(1) and c1(4) and c1(0));

d1(2) := (c1(1) and c1(2) and c1(3))

or (c1(1) and c1(3) and c1(4))

or (c1(1) and c1(2) and c1(0))

or (c1(2) and c1(3) and c1(0))

or (c1(3) and c1(4) and c1(0))

or (c1(2) and c1(4))

or (c1(1) and c1(4) and c1(0));

72

b0(0) <= d1(0);
b0(1) <= d1(1);

el := d1Q2);

c2(0) := e2;

c2(1) := al(0);

c2(2) := al(l);

c2(3) := a6(0);

c2(4) := a6(1);

d2(0) := (c2(1) and (not c2(3)) and (not c2(0)))

d2(1) :

d22) :=

or (not ¢2(1) and c2(3) and (not ¢2(0)))

or (not ¢2(1) and (not ¢2(3)) and c2(0))

or (c2(1) and ¢2(3) and c2(0));

(not ¢2(2) and not c2(1) and c2(4) and not c2(0))

or (not ¢2(2) and c¢2(4) and not ¢2(3) and not c2(0))
or (c2(2) and not c2(4) and not c2(3) and not c2(0))
or (c2(2) and not ¢2(1) and not c2(4) and not c2(0))
or (not ¢2(2) and c2(1) and not ¢2(4) and c2(3))

or (c2(2) and c2(1) and ¢2(3) and c2(4))

or (not ¢2(1) and not ¢2(2) and c2(4) and not c2(3))
or (not c2(1) and ¢2(2) and not ¢2(3) and not c2(4))
or (c2(1) and not c2(2) and not c2(4) and c2(0))

or (not c2(2) and not c2(4) and c2(3) and c2(())

or (c2(2) and ¢2(3) and ¢2(4) and ¢2(0))

or (c2(2) and c2(1) and c2(4) and c2(0));

(c2(1) and ¢2(2) and ¢2(3))

or (c2(1) and c2(3) and c2(4))

or (c2(1) and c2(2) and c2(0))

or (c2(2) and c2(3) and c2(0))

or (c2(3) and c2(4) and c2(0))

or (c2(2) and c2(4))

or (c2(1) and c2(4) and c2(0));

b1(0) <= d2(0);
bl(l) <= d2(1);

e2 := d2(2);
c3(0) := e3;
c3(1) := a2(0);
c3(2) := a2(1);
c3(3) := a5(0);
c3(4) := a5(1);
d3(0) := (c3(1) and (not c3(3)) and (not c3(0)))

or (not c3(1) and c3(3) and (not c3(0)))

73

or (not c3(1) and (not c3(3)) and c3(0))
or (c3(1) and ¢3(3) and ¢3(0));

d3(1) := (not ¢3(2) and not ¢c3(1) and ¢3(4) and not c3(0))

or (not c3(2) and c3(4) and not ¢3(3) and not ¢3(0))
or (c3(2) and not c3(4) and not ¢3(3) and not ¢3(0))
or (c3(2) and not c3(1) and not c3(4) and not ¢3(0))
or (not ¢3(2) and c3(1) and not ¢3(4) and ¢c3(3))

or (c3(2) and c3(1) and ¢c3(3) and ¢3(4))

or (not c3(1) and not ¢3(2) and c3(4) and not ¢3(3))
or (not c3(1) and ¢3(2) and not ¢3(3) and not ¢3(4))
or (c3(1) and not c3(2) and not ¢3(4) and c3(0))

or (not c¢3(2) and not c3(4) and c3(3) and c3(0))

or (c3(2) and ¢3(3) and c3(4) and ¢3(0))
or (c3(2) and c3(1) and c3(4) and ¢3(0));
d3(2) := (c3(1) and c3(2) and c3(3))

or (c3(1) and c3(3) and c3(4))

or (c3(1) and c3(2) and ¢3(0))

or (c3(2) and c3(3) and c3(0))

or (c3(3) and c3(4) and c3(0))

or (c3(2) and c3(4))

or (c3(1) and c3(4) and c3(0));

b2(0) <= d3(0);
b2(1) <= d3(1);

e3 := d3(2);
c4(0) := ed4;
c4(1) := a3(0);
c4(2) := a3(l);
c4(3) := a4(0);
cd4(4) := ad4(1);
d4(0) := (c4(1) and (not c4(3)) and (not c4(0)))

or (not c4(1) and c4(3) and (not c4(0)))
or (not c4(1) and (not c4(3)) and c4(0))
or (c4(1) and c4(3) and c4(0));

d4(1)

:= (not c4(2) and not c4(1) and c4(4) and not c4(0))

or (not c4(2) and c4(4) and not c4(3) and not c4(0))
or (c4(2) and not c4(4) and not c4(3) and not c4(0))
or (c4(2) and not c4(1) and not c4(4) and not c4(0))
or (not c4(2) and c4(1) and not c4(4) and c4(3))

or (c4(2) and c4(1) and c4(3) and c4(4))

or (not c4(1) and not c4(2) and c4(4) and not c4(3))
or (not c4(1) and c4(2) and not c4(3) and not c4(4))
or (c4(1) and not c4(2) and not c4(4) and c4(0))

74

or (not c4(2) and not c4(4) and c4(3) and c4(0))
or (c4(2) and c4(3) and c4(4) and c4(0))
or (c4(2) and c4(1) and c4(4) and c4(0));

d4(2)

:= (c4(1) and c4(2) and c4(3))

or (c4(1) and c4(3) and c4(4))
or (c4(1) and c4(2) and c4(0))
or (c4(2) and c4(3) and c4(0))
or (c4(3) and c4(4) and c4(0))
or (c4(2) and c4(4))

or (c4(1) and c4(4) and c4(0));

b3(0) <= d4(0);

b3(1) <= d4(1);

ed := d4(2);

c5(0) := e5;

c5(1) := a3(0);

c5(2) := a3(1);

¢5(3) := not a4(0);

¢5(4) := not a4(l);

d5(0) := (c5(1) and (not ¢5(3)) and (not ¢5(0)))

or (not c¢5(1) and ¢5(3) and (not ¢5(0)))
or (not ¢5(1) and (not ¢5(3)) and ¢5(0))
or (c5(1) and c¢5(3) and ¢5(0));

ds(1)

:= (not c¢5(2) and not ¢5(1) and c5(4) and not c5(0))

or (not c5(2) and ¢5(4) and not ¢5(3) and not c5(0))
or (c5(2) and not ¢5(4) and not c¢5(3) and not c5(0))
or (c5(2) and not c¢5(1) and not c5(4) and not c5(J))
or (not ¢5(2) and c5(1) and not c5(4) and c5(3))

or (c5(2) and ¢5(1) and ¢5(3) and c5(4))

or (not c5(1) and not ¢5(2) and c5(4) and not ¢5(3))
or (not ¢5(1) and ¢5(2) and not ¢5(3) and not ¢5(4))
or (c5(1) and not c¢5(2) and not c5(4) and c5(0))

or (not ¢5(2) and not c5(4) and ¢5(3) and ¢5(0))

or (c5(2) and c5(3) and c5(4) and c5(0))

or (c5(2) and c5(1) and c5(4) and c5(0));

d5(2) := (c5(1) and c5(2) and ¢5(3))

or (c5(1) and ¢5(3) and c5(4))
or (c5(1) and c5(2) and ¢5(0))
or (c5(2) and c5(3) and ¢5(0))
or (c5(3) and ¢5(4) and ¢5(0))
or (c5(2) and c5(4))

or (c5(1) and c5(4) and c5(0));

b4(0) <= d5(0);

75

bd(1) <= dS(1);
e§ := d5Q2);

c6(0) : = e6;
c6(1) := a2(0);
c6(2) := a2(1);
¢6(3) := not a5(0);
¢6(4) := not aS(1);
d6(0) := (c6(1) and (not c6(3)) and (not c6(0)))
or (not c6(1) and c6(3) and (not c6(0)))
or (not c6:.) and (not ¢6(3)) and c6(0))
or (c6(1) and ¢6(3) and c6(0));
d6(1) := (not c6(2) and not c6(1) and c6(4) and not c6(0))
or (nct ¢6(2) and c6(4) and not ¢6(3) and not c6(0))
or (c6(2) and not c6(4) and not c6(3) and not c6(0))
or (c6(2) and not c6(1) and not ¢6(4) and not c¢6(0))
or (not c6(2) and c6(1) and not c¢6(4) and c6(3))
or (c6(2) and c6(1) and c6(3) and c6(4))
or (not c6(1) and not c6(2) and c6(4) and not ¢6(3))
or (not c¢6(1) and ¢6(2) and not ¢6(3) and not c6(4))
or (c6(1) and not ¢6(2) and not c6(4) and c6(0))
or (not ¢6(2) and not c6(4) and c6(3) and c6(0))
or (c6(2) and ¢6(3) and c6(4) and c6(0))
or (c6(2) and c6(1) and c6(4) and c6(0));
d6(2) := (c6(1) and c6(2) and c6(3))
or (c6(1) and c6(3) and c6(4))
or (c6(1) and c6(2) and c6(0))
or (c6(2) and ¢6(3) and c6(0))
or (c6(3) and ¢6(4) and c6(0))
or (c6(2) and c6(4))
or (c6(1) and c6(4) and c6(0));
bS(0) <= d6(0);
bS(1) <= d6(1);
e6 := d6(2);

c7(0) := eT7;

c¢7(1) := al(0);

¢7(2) := al(1);

¢7(3) := not a6(0);

¢7(4) := not a6(1);

d7(0) := (c7(1) and (not ¢7(3)) and (not c7(0)))
or (not c¢7(1) and ¢7(3) and (not c7(0)))
or (not ¢7(1) and (not c7(3)) and c7(0))

76

or (c7(1) and ¢7(3) and c7(0));

d7(1) := (not ¢7(2) and not ¢7(1) and ¢7(4) and not ¢7(0))
or (not ¢7(2) and ¢7(4) and not ¢7(3) and not ¢7(0))
or (c7(2) and not ¢7(4) and not ¢7(3) and not c7(0))
or (c7(2) and not c7(1) and not c¢7(4) and not c7(0))
or (not ¢7(2) and ¢7(1) and not ¢7(4) and c7(3))
or (c7(2) and ¢7(1) and ¢7(3) and ¢7(4))
or (not ¢7(1) and not ¢7(2) and ¢7(4) and not c7(3))
or (not ¢7(1) and ¢7(2) and not ¢7(3) and not c7(4))
or (c7(1) and not c7(2) and not ¢7(4) and ¢7(0))
or (not ¢7(2) and not c¢7(4) and c7(3) and ¢7(0))
or (c7(2) and ¢7(3) and ¢7(4) and c7(0))
or (c7(2) and c7(1) and c7(4) and ¢7(0));

d72) := (¢7(1) and ¢7(2) and c7(3))
or (c7(1) and ¢7(3) and c7(4))
or (c7(1) and ¢7(2) and c7(0))
or (c¢7(2) and ¢7(3) and c7(0))
or (c7(3) and ¢7(4) and c7(())
or (c7(2) and c7(4))
or (c7(1) and ¢7(4) and ¢c7(0));

b6(0) <= d7(0);

b6(1) <= d7(1);

e7 := d7(2);

c8(0) := e8:

c8(1) := a0(0);
c8(2) := al(1);
c8(3) := not a7(0);
c8(4) := not a7(1);

d8(0) := (c8(1) and (not c8(3)) and (not c8(0)))
or (not c8(1) and c8(3) and (not c8(0)))
or (not c8(1) and (not c¢8(3)) and c8(0))
or (c8(1) and c8(3) and c8(0));

d8(1) := (not c8(2) and not c8(1) and c8(4) and not c8(0))
or (not c8(2) and c8(4) and not c8(3) and not c8(0))
or (c8(2) and not c8(4) and not c8(3) and not c8(0))
or (c8(2) and not c8(1) and not c8(4) and not c8(0))
or (not ¢8(2) and c8(1) and not c8(4) and c8(3))
or (c8(2) and c8(1) and c8(3) and c8(4))
or (not c8(1) and not c8(2) and c8(4) and not c8(3))
or (not c8(1) and c8(2) and not ¢8(3) and not c8(4))
or (c8(1) and not c8(2) and not c8(4) and c8(0))
or (not ¢8(2) and not c8(4) and c8(3) and c8(0))

77

or (c8(2) and c8(3) and c8(4) and c8(0))
or (c8(2) and c8(1) and c8(4) and ¢8(0));
d8(2) := (c8(1) and c8(2) and c8(3))
or (c8(1) and c8(3) and c8(4))
or (c8(1) and c8(2) and c8(0))
or (c8(2) and c8(3) and c8(0))
or (c8(3) and c8(4) and c8(0))
or (c8(2) and c8(4))
or (c8(1) and c8(4) and c8(0));
b7(0) <= d8(0);
b7(1) <= d8(1);
e8 := d8(2);
wait on a0,al,a2,a3,ad4,a5,a6,a7,CLK,cr,st;
end process;
end beh;

Register

entity reg is
port(a0,al,a2,a3,ad,a$,a6,a7 : bit_vector(l downto 0);

b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(l downto 0);

CLK : bit);

end reg;
architecture beh of reg is
begin
process
variable d0,d1,d2,d3,d4,dS,d6,d7 : bit_vector(l downto 0);
begin

do0 := a0;

dl := al;

d2 := a2;

d3 := a3;

dd := ad;

dS := a§;

d6 := aé;

d7 := a7;

wait until CLK’event and CLK = ’1’;
b0 <= d0;

bl <= dl;

b2 <= d2;

b3 <= d3;

b4 <= d4;

bS <= d§;

b6 <= d6;

b7 <= d7;

78

wait on CLK;
end process;
end beh;
ROM

entity rom is
port(e0,el,e2,e3,e4,e5,e6,e7 : bit_vector(l downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(15 downto 0);
CLK : bit);
end rom;
architecture beh of rom is
begin
process
variable a10,a11,a20,a21,a30,a31,a40,a41,a50,a51,260,a61,a70,a71,
a80,a81 : bit_vector(3 downto 0);
begin
wait until CLK’event and CLK = ’1’;

al0Q3) := e0(0); a10(2) := el(0); a10(1) : = e2(0); a10(0) := ¢3(0);
all(3) := e0(1); a11(2) := el(1); al1(1) := e2(1); al1(0) := e3(1);
a20(3) := e7(0); a20(2) := e6(0); a20(1) := e5(0); a20(0) := =4(0);
a21Q3) := e7(1); a21(2) := e6(1); a21(1) := eS5(1); a21(0) := ed(1);
a30(3) := e0(0); a30(2) := el(0); a30(1) := e2(0); a30(0) := e3(0);
a31(3) := e0(1); a31(2) := el(1); a31(1) := e2(1); a31(0) := e3(1);
ad40(3) := e7(0); a40(2) := e6(0); ad0(1) := eS(0); ad0(0) := e4(0);
ad41(3) := e7(1); ad1(2) := e6(1); ad41(1) := e5(1); ad1(0) : = ed(1);
a50(3) := e0(0); aS0(2) := el(0); aS0(1) := e2(0); aS0(0) := e3(0);
aS1(3) := e0(1); aS1(2) := el(1); aS1(1) := e2(1); aS1(0) := e3(1);
a60(3) := e7(0); a60(2) := e6(0); a60(1) := e5(0); a60(0) := e4(0);
a61(3) := e7(1); a61(2) := e6(1); a61(1) := eS(1); a61(0) := ed(1);
a70(3) := e0(0); a70(2) := el(0); a70(1) := e2(0); a70(0) := e3(0);
a71(3) := e0(1); a71(2) := el(1); a71(1) := e2(1); a71(0) := e3(1);
a80(3) := e7(0); a80(2) := e6(0); a80(1) := e5(0); a80(0) := ed(0);
a81(3) := e7(1); a81(2) := e6(1); a81(1) := e5(1); a81(0) := ed(1);
case al0 is

when "0000" => b10 < = "0000000000000000";
when "0001" => b10 <= "0001011010100000";
when "0010" = > b10 <= "0001011010100000";
when "0011" = > b10 <= "0010110101000001";
when "0100" = > b10 <= "0001011010100000";
when "0101" = > b10 <= "0010110101000001";
when "0110" => b10 <= "0010110101000001";
when "0111" => b10 <= "0100001111100001";

79

when "1000" => bl10 <= "0001011010100000";
when "1001" => b10 <= "0010110101000001";
when "1010" => b10 <= "0010110101000001";
when "1011" => b10 <= "0100001111100001";
when "1100" => b10 <= "0010110101000001";
when "1101" => b10 <= "0100001111100001";
when "1110" => bl10 <= "0100001111100001";
when "1111" => bl10 <= "0101101010000010";
end case;

case all is

when "0000" => bll <= "0000000000000000";
when "0001" => bll <= "0001011010100000";
when "0010" => bll <= "0001011010100000";
when "0011" => bll <= "0010110101000001";
when "0100" => bll <= "0001011010100000";
when "0101" => bll <= "0010110101000001";
when "0110" => bll <= "0010110101000001";
when "0111" => bll <= "0100001111100001";
when "1000" => bll <= "0001011010100000";
when "1001" => bll <= "0010110101000001";
when "1010" => bll <= "0010110101000001";
when "1011" => bll <= "0100001111100001";
when "1100" => bll <= "0010110101000001";
when "1101" => bll <= "0100001111100001";
when "1110" => bll <= "0100001111100001";
when "1111" => b1l <= "0101101010000010";
end case;

case a20 is

whea "0000" => b20 <= "0000000000000000";
when "0001" => b20 <= "0000011000111110";
when "0010" => b20 <= "0001000111000111";
when "0011" => b20 < = "0001100000000101";
when "0100" => b20 <= "0001101010011011";
when "0101" => b20 <= "0010000011011001";
when "0110" => b20 <= "0010110001100010";
when "0111" => b20 <= "0011001010100000";
when "1000" => b20 <= "0001111101100010%;
when "1001" => b20 <= "0010010110100000";
when "1010" => b20 <= "0011000100101001";
when "1011" => b20 <= "0011011101101000";
when "1100" => b20 <= "0011100111111101";

80

when "1101" => b20 <= "0100000000111100";
when "1110" = > b20 <= "0100101111000101";
when "1111" => b20 <= "0101001000000011";
end case;

case a2l is

when "0000" => b21 <= "0000000000000000";
when "0001" => b21 <= "0000011000111110";
when "0010" => b21 <= "0001000111000111";
when "0011" => b2l <= "0001100000000101";
when "0100" => b21 <= "0001101010011011";
when "0101" => b21 <= "0010000011011001";
when "0110" => b2l <= "0010110001100010";
when "0111" => b21 <= "0011001010100000";
when "1000" => b2l <= "0001111101100010";
when "1001" => b2l <= "0010010110100000";
when "1010" => b21 <= "0011000100101001";
when "1011" => b21 <= "0011011101101000";
when "1100" => b21 <= "0011100111111101";
when "1101" => b21 <= "0100000000111100";
when "1110" => b2l <= "0100101111000101";
when "1111" => b21 <= "0101001000000011";
end case;

case a3l is

when "0000" => b30 < = "0000000000000000";
when "0001" => b30 <= "1110001001110000";
when "0010" => b30 <= "1111001111000010";
when "0011" => b30 <= "1101011000110001";
when "0100" => b30 <= "0000110000111110";
when "0101" => b30 <= "1110111010101111";
when "0110" => b30 < = "0000000000000000";
when "0111" => b30 <= "1110001001110000";
when "1000" => b30 <= "0001110110010000";
when "1001" => b30 <= "0000000000000000";
when "1010" => b30 <= "0001000101010001";
when "1011" => b30 <= "1111001111000010";
when "1100" => b30 <= "0010100111001111";
when "1101" => b30 < = "0000110000111110";
when "1110" => b30 <= "0001110110010000";
when "1111" => b30 < = "0000000000000000";

end case;

81

case a3l is

when "0000" => b31 <= "0000000000000000";
when "0001" => b3l <= "1110001001110000";
when "0010" => b31 <= "1111001111000010";
when "0011" => b31 <= "1101011000110001";
when "0100" => b31 <= "0000110000111110";
when "0101" => b3l <= "1110111010101111";
when "0110" => b31 <= "0000000000000000";
when "0111" => b3l <= "1110001001110000";
when "1000" => b31 <= "0001110110010000";
when "1001" => b31 <= "0000000000000000";
when "1010" => b31 <= "0001000101010001";
when "1011" = > b31 <= "1111001111000010";
when "110¢" => b31 <= "0010100111001111";
when "1101" => b31 <= "0000110000111110";
when "1110" => b31 <= "0001110110010000";
when "1111" => b31 <= "0000000000000000";
end case;

case ad0 is

when "0000" => b40 <= "0000000000000000";
when "0001" => b40 <= "1110111000111001";
when "0010" => b40 <= "1110000010011110";
when "0011" => b40 <= "1100111011010111";
when "0100" => b40 <= "1111100111000010";
when "0101" => b40 <= "1110011111111011";
when "0110" = > b40 <= "1101101001100000";
when "0111" = > b40 <= "1100100010011000";
when "1000" => b40 <= "0001101010011011";
when "1001" => b40 < = "0000100011010100";
when "1010" => b40 <= "1111101100111001";
when "1011" => b40 <= "1110100101110010";
when "1100" => b40 < = "0001010001011101";
when "1101" => b40 <= "0000001010010101";
when "1110" => b40 <= "1111010011111011";
when "1111" => b40 < = "1110001100110100";
end case;

case a4l is

when "0000" => bdl < = "0000000000000000";
when "0001" => bdl <= "1110111000111001";
when "0010" = > bd4i <= "1110000010011110";

82

when "0011" => b4l <= "1100111011010111";
when "0100" => b4l <= "1111100111000010";
when "0101" => b4l <= "1110011111111011";
when "0110" => b4l <= "1101101001100000";
when "0111" => b4l <= "1100100010011000";
when "1000" => b4l <= "0001101010011011";
when "1001" => b4l <= "0000100011010100";
when "1010" => b4l <= "1111101100111001";
when "1011" => b4l <= "1110100101110010";
when "1100" => b4l <= "0001010001011101";
when "1101" => b4l <= "0000001010010101";
when "1110" => b4l <= "1111010011111011";
when "1111" => b4l <= "1110001100110100";

end case;

case aSQ is

when "0000" = > bS50 < = "0000000000000000";
when "0001" => bS0 <= "0001011010100000";
when "0010" => bS0 <= "1110100101100000";
when "0011" => bS50 <= "0000000000000000";
when "0100" => bSO <= "1110100101100000";
when "0101" => bS50 < = "0000000000000000";
when "0110" => bS50 <= "1101001010111111";
when "0111" => bS50 <= "1110100101100000";
when "1000" => bS50 <= "0001011010100000";
when "1001" => bS50 <= "0010110101000001";

when "1010" => bSO < = "0000000000000000";
When "1011" = > bS50 <= "0001011010100000";
When "1100" => bS50 <= "0000000000000000"
When "1101" => bS50 <= "0001011010100000";
When "1110" => bS50 <= "1110100101100000";
When "1111" => bS50 < = "0000000000000000"
end case;

- .o o

s o

case aSl is

when "0000" = > bS1 < = "0000000000000000";
when "0001" => b51 <= "0001011010100000";
when "0010" => b5l <= "1110100101100000":
when "0011" = > bS5l < = "0000000000000000";
when "0100" = > bS1 <= "1110100101100000";
when "0101" = > bS1 <= "0000000000000000";
when "0110" => bS1 <= "1101601010111111";
when "0111" => b5l <= "1110100101100000";

83

when "1000" => b51 <= "0001011010100000";
when "1001" = > b51 <= "0010110101000001";
when "1010" = > b51 < = "0000000000000000";
When "1011" => b51 <= "0001011010100000";
When "1100" => b51 <= "0000000000000000";
When "1101" => bS1 <= "0001011010100000";
When "1110" => bS1 <= "1110100101100000";
When "1111" => bS1 <= "0000000000000000";
end case;

case a60 is

when "0000" => b60 <= "0000000000000000";
when "0001" => b60 <= "0001101010011011";
when "0010" => b60 <= "0000011000111110";
when "0011" => b60 <= "0010000011011001";
when "0100" => b60 <= "1110000010011110";
when "0101" => b60 <= "1111101100111001";
when "0110" => b60 <= "1110011011011100";
when "0111" => b60 <= "0000000101110110";
when "1000" => b60 <= "0001000111000111";
when "1001" => b60 <= "0010110001100010";
when "1010" => b60 <= "0001100000000101";
When "1011" => b60 < = "0011001010100000";
When "1100" => b60 <= "1111001001100101";
When "1101" => b60 <= "0000110100000000";
When "1110" => b60 <= "1111100010100011";

When "1111" => b60 <=

"0001001100111110";

end case;

case a6l is

when "0000" => b61 <= "0000000000000000";
when "0001" => b6l <= "0001101010011011";
when "0010" => b6l <= "0000011000111110";
when "0011" => b6l <= "0010000011011001";
when "0100" => b6l <= "1110000010011110";
when "0101" => b61 <= "1111101100111001";
when "0110" => b61 <= "1110011011011100";
when "0111" => b6l < = "0000000101110110";
when "1000" => b6l <= "0001000111000111";
when "1001" => b6l <= "(010110001100010";
when "1010" = > b6l <= "0001100000000101";

When "1011" => b6l <= "0011001010100000";
When "1100" => b6l <= "1111001001100101";

84

When "1101" => b61 <= "0000110100000000";
When "1110" => b61 <= "1111100010100011";
When "1111" => b6l <= "0001001100111110";

end case;

case a70 is

when "0000" => b70 <= "0000000000000000";
when "0001" => b70 <= "1111001111000010";
when "0010" => b70 <= "0001110110010000";
when "0011" => b70 <= "0001000101010001";
when "0100" => b70 <= "1110001001110000";
when "0101" => b70 <= "1101011000110001";
when "0110" => b70 <= "0000000000000000";
when "0111" => b70 <= "1111001111000010";
when "1000" => b70 <= "0000110000111110";
when "1001" => b70 <= "0000000000000000";
when "1010" => b70 <= "0010100111001111";
When "1011" => b70 <= "0001110110010000";
When "1100" => b70 <= "1110111010101111";
When "1101" => b70 <= "1110001001110000";
When "1110" => b70 <= "0000110000111110";
When "1111" => b70 <= "0000000000000000";
end case;

case a7l is

when "0000" => b71 <= "0000000000000000";
when "0001" => b71 <= "1111001111000010";
when "0010" => b71 <= "0001110110010000";
when "0011" => b71 <= "0001000101010001";
when "0100" => b71 <= "1110001001110000";
when "0101" => b71 <= "1101011000110001";
when "0110" => b71 <= "0000000000000000";
when "0111" => b71 <= "1111001111000010";
when "1000" => b71 <= "0000110000111110";
when "1001" => b71 <= "0000000000000000";
when "1010" => b71 <= "0010100111001111";
When "1011" => b71 <= "0001110110010000";
When "1100" => b71 <= "1110111010101111";
When "1101" => b71 <= "1110001001110000";
When "1110" => b71 <= "0000110000111110";
When "1111" => b71 < = "0000000000000000";
end case;

85

case a80 is

when "0000" = > b80 <= "0000000000000000";
when "0001" => b80 <= "1110000010011110";
when "0010" => b80 <= "0:001101010011011";
when "0011" => b80 <= "1111101100111001";
when "0100" => b80 <= "1110111000111001";
when "0101" => b80 <= "1100111011010111";
when "0110" => b80 <= "0000100011010100";
when "0111" => b80 <= "1110100101110010";

when "1000" => b80 <= "0000011000111110";
when "1001" => b80 <= "1110011011011100";
when "1010" => b80 < = "0010000011011001";
When "1011" => b80 <= "0000000101110110";
When "1100" => b80 <= "1111010001110111";
When "1101" => b80 <= "1101010100010101";
When "1110" => b80 <= "0000111100010010";
When "1111" => b80 <= "1110111110110000";
end case;

case a8l is
when "0000" => b81 <= "0000000000000000";
when "0001" => b81 <= "1110000010011110";
when "0010" => b81 <= "0001101010011011";
when "0011" => b81 <= "1111101100111001";
when "0100" => b81 <= "1110111000111001";
when "0101" => b81 <= "1100111011010111";
when "0110" => b81 <= "0000100011010100";
when "0111" => b81 <= "1110100101110010";
when "1000" => b81 <= "0000011000111110";
when "1001" => b81 <= "1110011011011100";
when "1010" = > b81 <= "0010000011011001";
When "1011" => b81 <= "0000000101110110";
When "1100" => b81 <= "1111010001110111";
When "1101" => b81 <= "1101010100010101";
When "1110" => b81 <= "0000111100010010";
When "1111" => b81 <= "1110111110110000";
end case;
wait on e0,el,e2,e3,ed,e5,e6,e7,CLK;
end process;

end beh;

Shift right 1-bit register

entity shi_1 is
port(f1,f2,f3,14,15,16,17,(8,f9,f10,f11,f12,f13,f14,f15,16:

86

bit_vector(15 downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(15 downto 0);
CLK : bit);
end shi_1;
architecture beh of shi_1 is
begin
process
variable al,a2,a3,a4,a5,a6,a7.a8 : bit_vector(15 downto 0);
begin
wait until CLK’event and CLK = ’1’;
if f1(15) =0’ then
al(15) := ’0’;
else
al(15) := "1’
end if;
al(14) := f1(15);
al(13) := f1(19);
al(12) := f1(13);
al(11) := f1(12);
al(10) := f1(11);
al(9) := f1(10);
al(8) := f1(9);
al(7) := f1(8);
al(6) := f1(7);
al(5) := f1(6);
al(4) := f1(5);
al(3) := f1(4);
al2) := f1(3);
al(l) := f1(2);
al(0) := f1(1);

b10 <= al;

bll <= 123
if £3(15) = ’0’ then
a2(18) := ’0’;

else

a2(1%) := ’1I’;
end if;

a2(14) := f3(15);
a2(13) := 13(14);
a2(12) := f3(13);
a2(11) := f3(12);

87

a2(10) := f3(11);
a2(9) := f3(10);

a2(8) := £3(9);
a2(7 := f3(8);
a2(6) := f3(M;
a2(5) := f3(6);
a24) := f3(5);
a2(3) := f3(4);
a2.2) := f3(3);
a2(1) := f3(2);
a2(0) := f3(1);
b20 <= a2;
b2l <= f4;

if £5(15) = ’0’ then
a3(15) := 0%
else

a3(15) := ’1%;

end if;

a3(14) := 15(19);
a3(13) := 15(14);
a3(12) := £5(13);
a3(11) := 15(12);
a3(10) := f5(11);
a3(9) := 15(10);
a3@8) := 1509);
a3(? := 15(8);
a3 := f5(7);
al(5) := 15(6);
a3(d) := 15(5);
a3(3) := f54);
a3(2) := f5Q3);
a3(l) := f5(2);
a3(0) := f5(1);
b30 <= a3;
b31 <= f6;

if £7(15) = ’0’ then
ad(18) := ’0’;
else

ad(1%) :=’1°;
end if;

ad(14) := f7(15);

88

a4(13) : = 7(14);
ad(12) := f7(13);
ad(11) := 7(12);
a4(10) := f7(11);
ad(9) := 17(10);
ad(8) := 7(9);
ad(7) := f7(8);
ad(6) := f7(7;
ad(d) := 17(6);
ad(d) := 17(5);
ad4(3) := f71(9);
ad(2) := 17(3);
ad(1l) := 17Q2);
ad(0) := f7(1);

b40 < = a4;

b4l <= f8;
if 9(15) = ’0’ then
as(1%) :=’0’;
else

as(1§) := ’1’%;
end if;

as(14) := f9(15);
a5(13) := 19(14);
a5(12) := 1M9(13);
as(11) := f9(12);
a5(10) := f9(11);
as5(9) := M9(10);

as5(8) := 19(9);
as(? := 19(8);
as(6) := f9(N;
as(s) := 9(6);
as(4) := 19(5);
a5(3) := M94);
as@2) := MPQ);

as(1) := 19(2);
as@0) := M9(1);
bS50 < = a§;
bS1 <= f10;

if f11(15 = °0’ then
a6(15) := ’0’;
else

89

a6(15) :=’1’;

end if;
a6(14) := f11(15);
a6(13) := f11(14);
a6(12) := f11(13);
a6(11) := f11(12);
a6(10) := f11(11);
a6(9) := f11(10);
a6(8) := f119);
a6(n := f11(8);

a6(6) := f11(N;
a6(s) := f11(6);
a6(4) := f11(5);

a6(3) := f11(4);
a6(2) := f11(3);
a6(1l) := f11(2);
a6(0) := f11(1);

b60 <= aé;
b6l <= f12;
if £13(15) = °0’ then
a7(15) := ’0’;
else
a7(18) := "1’
end if;

a7(14) := f13(15);
a7(13) := f13(14);
a7(12) := f13(13);
a7(11) := f13(12);
a7(10) := f13(11);
a7(9) := f13(10);
a7(8) := f1309);
a7(7) := f13(8);
a7(6) := f13(7;
a7(8) := f13(6);
a7(4) := f13(5);
a7(3) :=

a7(2) := f13Q3);
a7(1) := f132);
a7(0) := f13(1);
b70 <= aT7;
b71 <= f14;

if f15(15) = ’0’ then
a8(1s) := '0’;

else

ag(15) := ’1’%;

end if;
a8(14) := f15(15);
a8(13) := f15(14);
a8(12) := f15(13);
a8(11) := f15(12);
a8(10) := f15(11);
a8(9) := f15(10);
a8(8) := f1509);
a8(N := f15(8);
a8(6) := f15(7);
a8(5 := f15(6);
a8(4) := f15(5);
a8(3) := f15(4);
a8(2) := f15(3);
a8(1) := f15(2);
a8(0) := f15(1);
b80 < = a8;
b81 < = f16;
wait on f1,f2,f3,f4,15,f6,17,18,/9,,10,f11,f12,£13,f14,f15,f16,CLK;

end process;

end beh;

Package 1
package packl is
procedure bi_to_in --change 16 bits(1 sign,1 integer and 14 fraction into real)
(variable x : bit_vector(1S downto 0);
variable y : »ut integer);
procedure in_to_bi —~change real into binary(1 sign,1 integer,14 fractions).
(variable m : in integer;
variable n : out bit_vector(15 downto 0));
end packl;
package body packl is
procedure bi_to_in
(variable x : bit_vector(15 downto 0);
variable y : out integer) is
variable sum : integer :=0;
variable p : bit_vector(15 downto 0);
begin
pP:i=x;
if p(15 =1’ then

91

for i in 0 to 14 loop
if p(i) = ’1’ then
for i in 0 to 13 loop
p(i+1) := not p(i+1);
end loop; exit;
end if;
end loop;
for k in 0 to 14 loop
if p(k) = ’1’ then
sum := sum + 2**k;
end if;
end loop;
y := -sum;
else
for 1in 0 to 14 loop
if p(I) = ’1’ then
sum := sum + 2**[;
end if;
end loop;
y := sum;
end if;
end bi_to_in;

procedure in_to_bi
(variable m : in integer;
variable n : out bit_vector(15 downto 0)) is
variable temp_a : integer := 0;
variable temp_b : integer := 0;
variable w : bit_vector(15 downto 0);
begin
if m < 0 then
temp _a := -m;
else
temp_a := m;
end il;
for i in 14 downto 0 loop
temp b := temp_a/(2**i);
temp_a := temp_a rem (2**i);
if (temp_b = 1) then
w(i) :="1’;
else
w(i) := '0’;
end if;

92

end loop;

if m > 0 then
w(l8) := ’0%;
else

w(l8) := 1’
for k in 0 to 14 loop
if w(k) = 1’ then
for k in 0 to 13 loop
w(k+1) := not wk+1);
ead loop; exit;
end if;
end loop;
end if;

— prevent negative zero occurs.
if w(14)="0’ and w(13)="0’ and w(12)=’0’ and w(11)="0’ and
w(10)="0’ and
w(9)="0’ and w(8)=0’ and w(7)=0’ and w(6)="0’ and w(5)="0’ and
w(4)="0" and w(3)="0’ and w(2)="0’ and w(1)="0’ and w(0)=0’ then
w(lS) :="0%;
end if;
n:i= w;

end in_to_bi;

end packl;

16-bit adder g
use work.packl.all;
entity add g is
port(al,a2,a3,ad,aS,a6,a7,a8,29,a10,a11,a12,a13,a14,a15,a16:
bit_vector(15 ¢ wnto 0);
bl,b2,b3,b4,bS, 6,b7,b8 : out bit_vector(15 downto 0);
CLK,as : bit);
end add_g;
architecture beh of add_g is
begin
process
variable x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,
nl,n2,n3,n4,n5,n6,n7,n8 : bit_vector(15 downto 0);
variable yl,y2,y3,y4,yS,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,
ml,m2,m3,m4,m5,m6,m7,m8 : integer := 0;

begin
wait until CLK’event and CLK = ’1’;
xl := al; x2 := a2; x3:= a3; x4 := ad;
xS := a8; x6 := a6; x7 := a7; x8 := a8;

93

x9 := a9; x10 := al0; x11 := all; x12 := al2;
x13 := al3; x14 := ald4; x15 := al§; x16 := al6;
bi_to_in(x1,y1);bi_to_in(x2,y2);bi_to_in(x3,y3);bi_to_in(x4,y4);
bi_to_in(x3,yS);bi_to_in(x6,y6);bi_to_in(x7,y7);bi_to_in(x8,y8);
bi_to_in(x9,y9);bi_to_in(x10,y10);bi_to_in(x11,y11);
bi_to_in(x12,y12);
bi_to_in(x13,y13);bi_to_in(x14,y14);bi_to_in(x15,y15);
bi_to_in(x16,y16);
if as = ’0’ then
ml:=yl + y2; m2 :=y3 + y4; m3 := y§ + y6; md := y7 + y8;
mS := y9 + yl10; m6 := yll + yl2; m7 := yl3 + yl4; m8 := yl§ + yl6;
else
ml :=yl-y2;m2:=y3-y4;m3:=yS-y6; md := y7 - y8;
mS := y9 - yl0; m6 := yll - y12; m7 := y13 - yl4; m8 := yl§ - y16;
end if;
in_to_bi(m1,nl1); in_to_bi(m2,n2); in_to_bi(m3,n3); in_to_bi(m4,nd);
in_to_bi(m$,n5); in_to_bi(m6,n6); in_to_bi(m7,n7); in_to_bi(m8,n8);
bl <= nl; b2 <= n2; b3 <= n3; b4 <= n4;
bS <= n5; b6 <= n6; b7 <= n7; b8 <= n8;
wait on al,a2,a3,a4,a5,a6,a7,a8,a9,a10,al1,a12,a13,a14,a15,a16,CLK;
end process;
end beh;

Register _h
entity reg_h is
port(a0,al,a2,a3,ad4,a$,a6,a7 : bit_vector(15 downto 0);
b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(15 downto 0);
CLK : bit);
end reg_h;
architecture beh of reg_h is
begin
process
variable d0,d1,d2,d3,d4,dS,d6,d7 : bit_vector(15 downto 0);
begin
do :
dl:

al;
al;
az;
a3;
ad;
dS := a$;

d6 := a6;

d7 := a7;

wait until CLK’event and CLK = ’1’;
b0 <= d0;

&
R R R

9%

bl < = dl;
b2 <= d2;
b3 <= d3;
b4 <= d4;
bsS <= d5;
b6 < = db;
b7 <= d7;

wait on CLK;
end process;
end beh;

Adder_i
use work.packl.all;
entity add_i is
port(al,a2.a3,a4,a5,a6,a7,a8,a9,a10,al1,a12,a13,a14,315,a16:
bit_vector(15 downto 0);
b1,b2,b3,b4,b5,b6,b7,b8 : out bit_vector(1S downto 0);
CLK : bit);
end add_i;
architecture beh of add_i is
begin
process
variable xl,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,
nl,n2,n3,n4,n5,n6,n7,n8 : bit_vector(15 downto 0);
variable yl,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,
ml,m2,m3,m4,m5,m6,m7,m8 : integer := 0;

begin
x1 := al; x2 := a2; x3 := a3; x4 := ad;
x5 := a8; x6 := a6; x7 := a7; x8 := a8;
x9 := a9; x10 := al0; x11 := all; x12 := al2;

x13 := al3; x14 := al4; x15:= alS5; x16 := al6;
bi_to_in(xl,yl);bi_to_in(xl,yZ);bi_to_’m(x3,y3)_:bi_to_in(x4,y4);
bi_to_in(xS,yS);bi_to__in(x6,y6);bi_to_in(x7,y7);bi_to_in(x8,y8);
bi_to_in(x9,y9);bi_to_in(xlO,le);bi_to_in(xll,yll);

bi_to_tn(x12,y12);

bi__to_in(x13,y13);bi_to_in(x14,yl4);bi_to_in(x15,y15);

bi_to_in(x16,y16);

ml := yl + y2; m2 :=y3 + yd;m3 := y5 + y6; md := y7 + y8;

mS$:= y9 + yl6; m6 := yll + y12; m7 := y13 + yl4; m8 := yl1§ + y16;

in_to_bi(m1,n1); in_to_bi(m2,n2); in_to_bi(m3,n3); in_to_bi(m4,n4);
in_to_bi(m$,nS); in_to_bi(n6,n6); in_to_bi(m7,n7); in_to_bi(m8,n8);

95

bS5 <= nS; b6 <= n6; b7 <= n7; b8 <= n8;

wait on al,a2,a3,ad4,a5,a6,a7,a8,a9,a10,al11,a12,a13,a14,a15,a16;
end process;
end beh;

Shift right 2-bit register

entity shi_2 is
port(al,a2,a3,ad,a5,a6,a7,a8 : bit_vector(1§ downto 0);
srl,sr2,sr3,sr4,srS,sr6,sr7,sr8,b1,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(15 downto 0);clr : bit_vector(15 downto 0);
CLK : bit);
end shi_2;
architecture beh of shi_2 is
begin
process
variable x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,yS5,y6,y7,y8 :
bit_vector(15 downto 0);
variable i : integer := 0;
begin
wait until CLK’event and CLK = ’1’;
x1 := al; x2 := a2; x3 := a3; x4 := ad;
x5 := a8; x6 := a6; x7 := a7; x8 := a$§;
if x1(15)=0’ then
y1(13) := x1(15); y1(12) : = x1(14); yI(1I) := x1(13);
y1(10) := x1(12); y1(9) := X1(11); Y1(8) := X1(10);
yi(7) := X1(9); y1(6) := x1(8); y1(5) := x1(7);

y1(4) := x1(6); y1(3) := x1(5); y1(2) := x1(4);
y1(1) := x1(3); y1(0) := x1(2); y1(14) := °0’;
y1(15) :=’0’;
else
y1(13) := x1(18); y1(12) : = x1(14); y1(11) := x1(13);
y1(10) := x1(12); y1(9) := X1(11); Y1(8) := X1(10);
y1(7) := X1(9); y1(6) := x1(8); y1(5) := x1(7);
yl(@) := x1(6); y1(3) := x1(5); y1(2) := x1(4);

y1(1) := x1(3); y1(0) := x1(2); y1(14) : = "1’;
yl(15) := 1’
end if;

if x2(15)=0’ then
y2(13) := x2(15); y2(12) : = x2(14); y2(11) := x2(13);
¥2(10) := x2(12); y2(9) := X2(11); Y2(8) : = X2(10);
y2(D := X209); y2(6) := x2(8); y2(5) := x2(7);
y2(4) := x2(6); y2(3) := x2(5); y2(2) := x2(4);

96

y2(1) := x2(3); y2(0) : = x2(2); y2(14) := ’0’;
y2(15) := °0’;
else
y2(13) := x2(15); y2(12) := x2(14); y2(11) := x2(13);
y2(10) := x2(12); y2(9) := X2(11); Y2(8) := X2(10);
¥y2(7 := X2(9); y2(6) := x2(8); y2(5) := x2(7);
y2(4) := x2(6); y2(3) := x2(5); y2(2) := x2(4);
¥2(1) := x2(3); y2(0) := x2(2); y2(14) := ’1’;
y2(15) := 1’
end if}

if x3(15) =0’ then
y3(13) := x3(15); y3(12) := x3(14); y3(11) := x3(13);
y3(10) := x3(12); y3(9) := X3(11); y3(8) := x3(10);

¥3(7) := X3(9); y3(6) := x3(8); y3(5) := x3(7);
y3(4) := x3(6); y3(3) := x3(5); y3(Q2) := x3(4);
y3(1) := x3(3); y3(0) := x3(2); y3(14) := °0’;
y3(15) := °0’;

else

y3(13) := x3(15); y3(12) := x3(14); y3(11) := x3(13);
y3(10) := x3(12); y3(9) := X3(11); Y3(8) := X3(10);

y3(7) := X3(9); y3(6) := x3(8); y3(5) := x3(7);
y3(4) := x3(6); y3(3) := x3(5); y3(2) := x3(4);
y3(1) := x3(3); y3(0) := x3(2); y3(14) := 1%
y3(15) := "1’

end if;

if x4(15)=’0’ then
y4(13) := x4(195); y4(12) := x4(14); y4(11) : = x4(13);
y4(10) := x4(12); y4(9) := X4(11); y4(8) := x4(10);
Y4(7) := X4(9); y4(6) := x4(8); yd(S) := x4(D;
y4(4) := x4(6); y4(3) : = x4(5); y4(2) := x4(4);
y4(1) := x4(3); y4(0) : = x4(2); yd(14) := ’0’;
y4(15) := ’0’;

else
y4(13) := x4(15); y4(12) := x4(14); y4(11) : = x4(13);
y4(10) := x4(12); y4(9) := X4(11); Y4(8) := X4(10);
y4(7) := X4(9); y4(6) := x4(8); y4(5) := x4(N);
y4(d) := x4(6); y4(3) := x4(5); yd(2) : = xd(d);
y4(1) := x4(3); y4(0) : = x4(2); y4(14) := ’1’;
y4(15) :=’1’;

end if;

97

if x5(15)="0’ then
y5(13) := x5(15); y5(12) := x5(14); y5(11) := x5(13);
y5(10) := x5(12); y5(9) := X5(11); y5(8) := x5(10);
¥y5(7) := X5(9); y5(6) := x5(8); y5(5) := x5(7);
y5(4) := x5(6); y5(3) := x5(5); y5(2) := x5(4);
y5(1D) := x53); y5(0) := x5(2); y5(14) := *0’;
yS5(15) := ’0’;

else
y5(13) := x5(15); y5(12) := x5(14); y5(11) := x5(13);
y5(10) := x5(12); y5(9) := x5(11); y5(8) := x5(10);
y5(7) := X5(9); y5(6) := x5(8); y5(5) := x5(7);
y5(4) := x5(6); y5(3) := x5(5); y5(2) := x5(4);
y5(1) := x5(3); y5(0) := x5(Q2); y5(14) := ’1’;
yS(15) := 1’

end if;

if x6(15)=0’ then
y6(13) := x6(15); y6(12) := x6(14); y6(11) := x6(13);
y6(10) := x6(12); y6(9) := X6(11); y6(8) := x6(10);
y6(?) := X6(9); y6(6) := x6(8); y6(5) := x6(7);
y6(4) := x6(6); y6(3) := x6(5); y6(2) := x6(4);
y6(1) := x6(3); y6(0) := x6(2); y6(14) := ’0’;
y6(15) := °0’;

else
y6(13) := x6(15); y6(12) := x6(14); y6(11) := x6(13);
y6(10) : = x6(12); y6(9) := x6(11); y6(8) := x6(10);
y6(7) := X6(9); y6(6) := x6(8); y6(5) := x6(7);
y6(4) := x6(6); y6(3) := x6(5); y6(2) := x6(4);
y6(1) := x6(3); y6(0) := x6(2); y6(14) := ’1’%;
y6(15) := 1%

end if;

if x7(15)="0" then
y7(13) := x7(15); y7(12) := x7(14); y7(11) := x7(13);
y7(10) := x7(12); y7(9) := X7(11); y7(8) := x7(10);
Y17 := X7(9); y7(6) := x7(8); y7(5) := x7(7);
y7(4) := x7(6); y7(3) := x7(5); y7(2) := x7(4);
y7(1) := x7(3); y7(0) := x7(2); y7(14) := '0’;
y7(15) := ’0’;

else
y7(13) := x7(15); y7(12) := x7(14); y7(11) := x7(13);
y7(10) := x7(12); y7(9) := x7(11); y7(8) := x7(10);
y7(D := X7(9); y7(6) := x7(8); y7(5) := x7(7);

98

y7(d) := x7(6); y7(3) := x7(5); y7(2) := x7(d);

y7(1) 1= x7(3); y7(0) := x7(2); y7(14) := 1’
y7(15) := ’1’;
end if;

if x8(15)="0’ then
y8(13) := x8(15); y8(12) := x8(14); y8(11) := x8(13);
y8(10) := x8(12); y8(9) := X8(11); y8(8) := x8(10);
y8(7) := X8(9); y8(6) := x8(8); y8(5) := x8(7);
y8(4) := x8(6); y8(3) := x8(5); y8(2) := x8(4);
y8(1) := x8(3); y8(0) := x8(2); y8(14) := ’0’;
y8(15) :='0’;
else
y8(13) := x8(195); y8(12) := x8(14); y8(11) := x8(13);

y8(10) := x8(12); y8(9) := x8(11); y8(8) := x8(10);
y8(D 1= X8(9); y8(6) := x8(8); y8(5) := x8(7);
y8(4) := x8(6); y8(3) := x8(5); y8(2) := x8(4);
y8(1) := x8(3); y8(0) := x8(2); y8(14) := ’'1’;
y8(18) := "1’

end if;

srl <= yl;srl <= y2;sr3 <= y3;srd <= yd;
sr§ <= y§; sr6 <= y6; sr7 <= y7T; sr8 <= y8;
it=i+l;
if i = 6 then
bl <=yl;b2 <= y2; b3 <= y3; b4 <= y4;
bS <= y5; b6 <= y6; b7 <= y7; b8 <= y8;
X1 := ¢lr; x2 := clr; x3 := clr; x4 := clr;
x$:= clr; x6 := clr; x7 := clr; x8 := clr
srl <= clr; sr2 <= clr; sr3 <= clr; sr4 <= clr;
sr5 <= clr; sr6 < = clr; sr7 <= clr; sr8 <= cir;
ii= 0
end if;

wait on al,a2,a3,ad,as,a6,a7,a8,cir,CLK;

end process;

end beh;

Result output

entity result is
port(al,a2,a3,ad,a5,a6,a7,a8 : bit_vector(1§ downto 0);

k : out bit_vector(15 downto 0);CLK : bit);

end result;
architecture beh of result is
type r is array(0 to 7) of bit_vector(15 downto 0);

9

begin

process
variable x : r;
begin
x(0) := al; x(1) := a2; x(2) := a3; x(3) := ad;
x(4) := a$§; x(5) := a6; x(6) := a7; x(7) := a8;

for i in 0 to 7 loop
wait until CLK’event and CLK = ’1’;
k <= x(i);
end loop;
wait on al,a2,a3,ad4,a5,a6,a7,a8,CLK;
end process;
end beh;
Test bench
use work.packl.all;
entity test is end test;
architecture str of test is
component clock_ge port(CLCK :inout bit);
end component;
component clock port(CLK :inout bit);
end component;
component control port(CLK : bit;ct : out bit);
end component;
component LOAD port(AlI : in bit_vector(11 downto 0);
B0,B1,B2,B3,B4,BS,B6,B7 : out bit_vector(11 downto 0);
CLK : in bit);
end component;
component shift
port(bi0,bil,bi2,bi3,bid,bi5,bi6,bi7 : in bit_vector(11 downte 0);
bo0,bol,bo2,bo3,bod4,bo5,b06,bo7 : out bit_vector(l downto 0);
CLK : in bit);
end component;
component adsu
port(a0,al,a2,a3,ad,a$,a6,a7 : bit_vector(l downto 0);
b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(l downto 0);
CLK,cr,st : bit);
end component;
component reg
port(a0,al,a2,a3,ad,a5,a6,a7 : bit_vector(l downto 0);
b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(l downto 0);
CLK : bit);
end component;
component rom

100

port(el,el,e2,e3,ed,e5,e6,e7 : bit_vector(l downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(15 downto 0);
CLK : bit);
end component;
component shi_1
port(f1,f2,£3,f4,£5,f6,£7,8,19,710,f11,f12,f13,f14,£15,f16:
bit_vector(15 downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(15 downto 0);
CLK : bit);
end component;
component delayl
port(a: bit;b: out bit;CLK: bit);
end component;
component delay2
port(a: bit;b: out bit; CLK: bit);
end component;
component delay3
port(a: bit;b: out bit;CLK: bit);
end component;
component delay4
port(a: bit;b: out bit;CLK: bit);
end component;
component delay5
port(a: bit;b: out bit; CLK: bit);
end component;
component delay6
port(a: bit;b: out bit;CLK: bit);
end component;
component delay?7
port(a: bit;b: out bit;CLK: bit);
end component;
component delay8
port(a: bit;b: out bit;CLK: bit);
end component;
component delay9
port(a: bit;b: out bit;CLK: bit);
end component;
component delay10
port(a: bit;b: out bit;CLK: bit);
end component;
component add_g

101

port(al,a2,a3,ad4,a5,a6,a7,a8,a9,al0,al1,al2,al13,al4,al15,al6:
bit_vector(15 downto 0);
b1,b2,b3,b4,b5,b6,b7,b8 : out bit_vector(15 downto 0);
CLK,as : bit);
end component;
component reg_h
port(a0,al,a2,a3,ad4,as,a6,a7 : bit_vector(15 downto 0);
b0,b1,b2,b3,bd,b5,b6,b7 : out bit_vector(1S downto 0);
CLK : bit);
end component;
component add_i
port(al,a2,a3,ad4,a5,a6,a7,a8,a9,a10,al1,a12,a13,a14,a15,al6:
bit_vector(1S downto 0);b1,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(15 downto 0);CLK : bit);
end component;
component shi_2
port(al,a2,a3,ad,a$,a6,a7,a8 : bit_vector(1S downto 0);
srl,sr2,sr3,srd,sr5,sr6,sr7,sr8,b1,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(15 downto 0);clr : bit_vector(15 downto 0);
CLK : bit);
end component;
component result
port(al,a2,a3,ad4,a$,a6,a7,a8 : bit_vector(15 downto 0);
k : out bit_vector(1S downto 0); CLK : bit);
end component;
for C: clock_ge use entity work.clock_ge(clk_ctl);
for ad: clock use entity work.clock(beh);
for a : control use entity work.control(beh);
for L : LOAD use entity work.LOAD(BEH);
for S : shift use entity work.shift(beh);
for D : adsu use entity work.adsu(beh);
for r : reg use entity work.reg(beh);
for o : rom use entity work.rom(beh);
for s_1 : shi_l use entity work.shi_1(beh);
for b : delayl use entity work.delayl(beh);
for e : delay2 use entity work.delay2(beh);
for dely3 : delay3 use entity work.delay3(beh);
for dely4 : delay4 use entity work.delayd(beh);
for delyS : delay$ use entity work.delayS(beh);
for dely6 : delay6 use entity work.delay6(beh);
for dely7 : delay7 use entity work.delay7(beh);
for dely8 : delay8 use entity work.delay8(beh);
for dely9 : delay9 use entity work.delay9(beh);

102

for delyl0 : delayl0 use entity work.delaylO(beh);
for g : add_g use entity work.add_g(beh);
for h : reg_h use entity work.reg_h(beh);
for i : add_i use entity work.add_i(beh);
for j : shi_2 use entity work.shi_2(beh);
for t : result use entity work.result(beh);
signal di : bit_vector(11 downto 0);
signal ck : bit;
signal clck : bit;
signal go : bit;
signal io : bit;
signal ho : bit;
signal te : bit;
signal de : bit;
signal ab : bit;
signal cd : bit;
signal ef : bit;
signal gh : bit;
signal ij : bit;
signal ki : bit;
signal d0,d1,d2,d3,d4,dS,d6,d7 : bit_vector(11 downto 0);
Signal so0,so01,s02,s03,504,505,506,507 : bit_vector(l downto 0);
signal c00,col,c02,c03,c04,c05,c06,c07 : bit_vector(l downto 0);
signal do0,dol,do2,do3,dod,doS,do6,do7 : bit_vector(l downto 0);
signal clr : bit :=0’;
signal set : bit :=’0’;
signal el,e2,e3,ed,e5,e6,e7,¢8,e9,e10,e11,e12,e13,e14,e15,e16 :
bit_vector(15 downto 0);
signal f1,12,13,14,15,f6,17,f8,19,f10,£11,f12,f13,f14,£15,f16:
bit_vector(1S downto 0);

signal g1,g2,83,24,25,26,27,28 : bit_vector(15 downto 0);

signal h1,h2,h3,h4,h5,h6,h7,h8 : bit_vector(15S downto 0);
signal i1,i2,i3,i4,i5,i6,i7,i8 : bit_vector(15 downto 0);
signal j1,j2,j3,j4,j5,j6,j7.i8 : bit_vector(15 downto 0);
signal r1,r2,r3,r4,r5,r6,r7,r8 : bit_vector .15 downto 0);
signal cr : bit_vector(1S downto 0) := "0000000000000000";
signal p : bit_vector(15 downto 0);

begin

C : clock_ge pcrt map(ck);

ad : clock port map(clck);

a : control port map(ck,go);

b : delayl port map(go,io,ck);

e : delay2 port map(ck,ho,clck);

103

dely3 :
dely4 :
delyS :
dely6 :
dely7 :

dely8
dely9 :

delay3 port map(ho,te,cick);
delay4 port map(te,de,clck);
delay$S port map(de,ab,cick);
delay6é port map(ab,cd,cick);
delay7 port map(cd,ef,clck);

: delay8 port map(ef,gh,clck);

delay9 port map(gh,ij,clck);

dely10 : delaylQ port map(ij,kl,clck);
L : LOAD port map(di,d0,d1,d2,d3,d4,dS,d6,d7,ck);
S : shift port map(d0,d1,d2,d3,d4,dS,d6,d7,

s00,s01,502,503,504,505,506,507,ck);

D : adsu port map(so0,sol,s02,s03,s04,505,506,507,

co0,co0l,co02,c03,co04,c05,c06,c07,
ck,clr,set);

r : reg port map(co0,col,co2,c03,c04,co05,c06,co07,

do0,dol,do2,do3,dod,doS5,do6,do7,
ck);

o : rom port map(do0,dol,do2,do3,dod,doS,do6,do7,

el,e2,e3,ed,e5,e6,¢7,e8,e9,e10,el1,e12,e13,e14,
elS,el6,ck);

s_1 : shi_1 port map(el,e2,e3,ed,eS,e6,e7,e8,e9,e10,el1,e12,e13,e14,e15,e16,

f1,£2,f3,14,15,f6,17,18,19,f10,11,f12,13,f14,f15,116,
ck);

g : add_g port map(f1,f2,f3,f4,15,f6,17,18,19,f10,f11,f12,f13,f14,f15,f16,

gl,g2,g3,84,85,86,87,28,ck,io);

h : reg_h port map(gl,g2,23,24,25,26,87,28,h1,h2,h3,h4,h5,h6,h7,h8,ck);

i : add_i port map(hl,rl,h2,r2,h3,r3,h4,r4,h5,r5,h6,r6,h7,r7,h8,r8,

i1,i2,i3,i4,i5,i6,i7,i8,ck);

J : shi_2 port map(il,i2,i3,i4,is,i6,i7,i8,r1,r2,r3,r4,rS,r6,r7,r8,

31,j2,53,j4,j5,j6.j7,i8,cr,kD);

t : result port map(j1,j2,j3,j4,j5,j6,j7,i8,p,ck);
set <=1’ after § ns;
di <= "000101101010" after 7 ns,

*000000000000" after 17 ns,
"000101101010" after 27 ns,
"001011010100" after 37 ns,
*000101101010" after 47 ns,
"000000000000" after S7 ns,
"000101101010" after 67 ns,
"001011010100" after 77 ns;

end str;

104

APPENDIX B. 16-BIT 1-D DCT VHDL SOURCE CODE

Shift right 2-bit register

entity shi_2 is
port(al,a2,a3,ad4,a$,a6,a7,a8 : bit_vector(15 downto 0);
srl,sr2,sr3,srd,srS,sr6,sr7,sr8,b1,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(15 downto 0);clr : bit_vector(15 downto 0);
CLK : bit);
end shi_2;
architecture beh of shi_2 is
begin
process
variable x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,yS,y6,y7,y8 :
bit_vector(1S downto 0);
variable i : integer := 0;
begin
wait until CLK’event and CLK = ’1’;
x1 := al; x2 := a2; x3 := a3; x4 := ad;
x5 := a$§; x6 := a6; x7 := a7; x8 := a8;
if x1(15)=0’ then
y1(13) := x1(15); y1(12) := x1(14); y1(11) := xI(13);
y1(10) := x1(12); y1(9) := X1(11); Y1(8) := X1(10);
yI(D := X1(9); y1(6) := x1(8); y1(5) := x1(7);
yl(@) := x1(6); y1(3) : = x1(5); y1(2) := x1(4);
y1(1) := x1(3); y1(0) := x1(2); y1(14) := 0’;
y1(18) := ’0’;
else
y1(13) := x1(15); y1(12) := x1(14); y1(11) := x1(13);
y1(10) := x1(12); y1(9) := X1(11); Y1(8) := X1(10);
yl(D := X1(9); y1(6) := x1(8); y1(5) := x1(7);
y1(d) := x1(6); y1(3) := x1(5); y1(2) := x1(4);
y1(1) := x1(3); y1(0) := x1(2); y1(14) := ’1’;
yl(185) := "1’
end if;

if x2(15)="0’ then
y2(13) := x2(15); y2(12) : = x2(14); y2(11) := x2(13);
y2(10) := x2(12); y2(9) := X2(11); Y2(8) := X2(10);
y2(D := X2(9); y2(6) := x2(8); y2(5) := x2(7);
y2(4) := x2(6); y2(3) := x2(5); y2(2) := x2(4);

105

y2(1) := x2(3); y2(0) := x2(2); y2(14) := 0’
y2(15) := ’0’;

else

y2(13) := x2(15); y2(12) := x2(14); y2(11) := x2(13);
y2(10) : = x2(12); y2(9) := X2(11); Y2(8) := X2(10);
y2(7) := X2(9); y2(6) := x2(8); y2(5) := x2(7);

y2(4) := x2(6); y2(3) := x2(5); y2(2) : = x2(4);

y2(1) := x2(3); y2(0) := x2(2); y2(14) := ’I’;

y2(15) := 1’

end if;

if x3(15)="0’ then

y3(13) := x3(15); y3(12) := x3(14); y3(11) := x3(13);
y3(10) := x3(12); y3(9) := X3(11); y3(8) := x3(10);
y3(D := X309); y3(6) := x3(8); y3(5) := x3(D;

y3(d) := x3(6); y3(3) := x3(5); y3(2) := x3(4);

y3(1) := x3(3); y3(0) := x3(2); y3(14) : = °0’;

else

y3(15) := ’0’;

y3(13) := x3(15); y3(12) := x3(14); y3(11) := x3(13);
y3(10) := x3(12); y3(9) := X3(11); Y3(8) := X3(10);
Y3(D := X3(9); y3(6) := x3(8); y3(5) := x3(7);

y3(4) := x3(6); y3(3) := x3(5); y3(2) := x3(4);

y3(1) := x3(3); y3(0) := x3(2); y3(14) : = "1’;
y3(15) := 1’

end if;

if x4(15)="0’ then

y4(13) := x4(15); y4(12) : = x4(14); y4(11) := x4(13);
y4(10) := x4(12); y4(9) := X4(11); y4(8) := x4(10);
y4(7) := X4(9); yd(6) := x4(8); y4(5) := x4(7);

y4(4) := x4(6); y4(3) := x4(5); y4(2) := x4(4);

y4(1) := x4(3); y4(0) := x4(2); y4(14) := ’0’;

y4(1$) := 0’;

else

y4(13) := x4(15); y4(12) := x4(14); yd(11) : = x4(13);
y4(10) := x4(12); y4(9) := X4(11); Y4(8) := X4(10);
y4(7) := X4(9); y4(6) := x4(8); y4(5) := x4(7);

y4(4) := x4(6); y4(3) := x4(5); y4(2) := xd(d);

yd(1) := x4(3); y4(0) := x4(2); y4(14) := ’1’;

y4(15) := ’1’;

end if;

106

if x5(15)="0" then
y5(13) := x5(15); y5(12) := x5(14); y5(11) := x5(13);
y5(10) := x5(12); y5(9) := X5(11); y5(8) := x5(10);
¥Y5(7 := X59); y5(6) := x5(8); y5(5) := x5();

y5(4) := x5(6); y5(3) := x5(5); y5(2) : = x5(4);

x5(3); y5(0) := x5(2); y5(14) := ’0’;

y5(1) :=
yS(18) := 0,
else

y5(13) := x5(18); y5(12) := x5(14); y5(11) := x5(13);
y5(10) := x5(12); y5(9) := x5(11); y5(8) := x5(10);
y5(7) := X5(9); y5(6) := x5(8); y5(5) := x5(7);
y5(4) := x5(6); y5(3) := x5(5); y5(2) := x5(4);
y5(1) := x5(3); y5(0) := x5(2); y5(14) := "1°;
y5(15) := ’1’;

end if;

if x6(15)=0’ then
y6(13) := x6(15); y6(12) := x6(14); y6(11) := x6(13);
y6(10) := x6(12); y6(9) := X6(11); y6(8) := x6(10);
y6(7) := X6(9); y6(6) := x6(8); y6(5) : = x6(7);
y6(4) := x6(6); y6(3) := x6(5); y6(2) := x6(4);
y6(1) := x6(3); y6(0) := x6(2); y6(14) := °0’;

Y6(15) := 0’;
else
y6(13) := x6(15); y6(12) := x6(14); y6(11) : = x6(13);

y6(10) : = x6(12); y6(9) := x6(11); y6(8) := x6(10);
y6(7) := X6(9); y6(6) := x6(8); y6(5) := x6(7);
y6(4) := x6(6); y6(3) := x6(5); y6(2) := x6(4);
y6(1) := x6(3); y6(0) := x6(2); y6(14) := 1’;
y6(15) := '1’;

end if;

if x7(15)=0’ then
y7(13) := x7(15); y7(12) := x7(14); y7(11) := x7(13);
y7(10) := x7(12); y7(9) := X7(11); y7(8) := x7(10);
Y7(7) := X7(9); y7(6) := x7(8); y7(S) := x7(7);

y7(4) := x7(6); y7(3) := x7(5); y7(2) := x7(4);
y7(1) := x7(3); y7(0) := x7(2); y7(14) := "0’;
y(15) := *0%;

else

y7(13) := x7(15); y7(12) := x7(14); y7(11) := x7(13);
y7(10) := x7(12); y7(9) := x7(11); y7(8) := x7(10);
y7(7) := X7(9); y7(6) := x7(8); y7(5) := x7(7);

107

y1(@) := x7(6); y7(3) := x7(5); y7(2) := x7(4);

y7(1) := x7(3); y7(0) : = x7(2); y7(14) := "1’;
y7(15) : = 1’
end if;

if x8(15)="0’ then
y8(13) : = x8(15); y8(12) := x8(14); y8(11) := x8(13);
y8(10) := x8(12); y8(9) := X8(11); y8(8) := x8(10);
y8(7) := X8(9); y8(6) := x8(8); y8(5) := x8(7);
y8(4) := x8(6); y8(3) := :8(5); y8(2) := x8(4);
y8(1) := x8(3); y8(0) := x8(2); y8(14) := ’0’;
y8(15) : = °0’;

else
y8(13) := x8(15); y8(12) := x8(14); y8(11) := x8(13);
y8(10) := x8(12); y8(9) := x8(11); y8(8) := x8(10);
y8(7) := X8(9); y8(6) := x8(8); y8(5) := x8(7);
y8(4) := x8(6); y8(3) := x8(5); y8(2) := x8(4);
y8(1) := x8(3); y8(0) := x8(2); y8(14) :=’1’;
y8(1%) := ’1’;

end if;

srl <= yl;sr2 <= y2;sr3 <= y3; srd <= yd;
sr§ <= y§; sr6 <= y6; sr7 <= y7;sr8 <= y8;
ir= i+l

if i = 8 then

bl <=yl;b2 <= y2; b3 <= y3; b4 <= y4;
bS <= y5; b6 <= y6; b7 <= y7; b8 <= y8;
x1 := clr; X2 := clr; x3 := clr; x4 := clr;
x5 := clr; x6 := clr; x7 := clr; x8 := clr;
srl <= clr; sr2 <= clr; sr3 <= clIr; srd <= clr;
sr§ <= clr; sr6 <= clr; sr7 <= clr; sr8 <= clr;
i:= 0;
end if;
wait on al,a2,a3,a4,a5,a6,a7,a8,cir,CLK;
end process;
end beh;
Test bench
use work.packl.all;
entity test is end test;
architecture str of test is
component clock_ge port(CLCK :inout bit);
end component;
component clock port(CLK :inout bit);

108

end component;

component control port(CLK : bit;ct : out bit);
end component;
component LOAD port(Al : in bit_vector(15 downto 0);
B0,B1,B2,B3,B4,B5,B6,B7 : out bit_vector(15 downto 0);
CLK : in bit);
end component;
component shift
port(bi0,bil,bi2,bi3,bi4,biS,bi6,bi7 : in bit_vector(1S downto 0);
bo0,bol,bo2,bo3,bod,boS,bo6,bo7 : out bit_vector(l downto 0);
CLK : in bit);
end component;
component adsu
port(a0,al,a2,a3,ad,a$,a6,a7 : bit_vector(l downto 0);
b0,b1,b2,b3,b4,b5,b6,b7 : out bit_vector(l downto 0);
CLK,cr,st : bit);
end component;
component reg
port(a0,al,a2,a3,ad4,a5,a6,a7 : bit_vector(l downto 0);
b0,b1,b2,b3,b4,bS5,b6,b7 : out bit_vector(l downto 0);
CLK : bit);
end component;
component rom
port(e0,el,e2,e3,ed,e5,e6,e7 : bit_vector(l downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(1S downto 0);
CLK : bit);
end component;
component shi_l
port(f1,12,£3,f4,15,f6,£7,8,9,10,f11,f12,f13,f14,15,f16:
bit_vector(15 downto 0);
b10,b11,b20,b21,b30,b31,b40,b41,b50,b51,b60,b61,b70,b71,b80,b81:
out bit_vector(15 downto 0);
CLK : bit);
end component;
component delayl
port(a: bit;b: out bit;CLK: bit);
end component;
component delay2
port(a: bit;b: out bit;CLK: bit);
end component;
component delay3

109

port(a: bit;b: out bit;CLK: bit);
end component;

component delay4
port(a: bit;b: out bit;CLK: bit);
end component;
component delayl$§
port(a: bit;b: out bit;CLK: bit);
end component;
component delayl6
port(a: bit;b: out bit;CLK: bit);
end component;
component delayl7
port(a: bit;b: out bit; CLK: bit);
end component;
component delayl8
port(a: bit;b: out bit;CLK: bit);
end component;
component add_g
port(al,a2,a3,ad4,aS,a6,a7,a8,a9,a10,al11,a12,a13,al14,a15,a16:
bit_vector(1S downto 0);
b1,b2,b3,b4,b5,b6,b7,b8 : out bit_vector(1S downto 0);
CLK,as : bit);
end component;
component reg_h
port(a0,al,a2,a3,ad,a5,a6,a7 : bit_vector(15 downto 0);
b0,b1,b2,b3,b4,bS5,b6,b7 : out bit_vector(l5 downto 0);
CLK : bit);
end component;
component add_i
port(al,a2,a3,ad4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16:
bit_vector(15 downto 0);b1,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(15 downto 0);CLK : bit);
end component;
component shi_2
port(al,a2,a3,ad,aS,a6,a7,a8 : bit_vector(1S downto 0);
srl,sr2,sr3,srd4,sr5,sr6,sr7,sr8,bl,b2,b3,b4,b5,b6,b7,b8 :
out bit_vector(1S downto 0);clr : bit_vector(15 downto 0);
CLK : bit);
end component;
component result
port(al,a2,a3,ad,a5,a6,a7,a8 : bit_vector(15 downto 0);
k : out bit_vector(15 downto 0); CLK : bit);

110

end component;

for C: clock_ge use entity work.clock_ge(clk_ctl);

for ad: clock use entity work.clock(beh);

for a : control use entity work.control(beh);

for L : LOAD use entity work. LOAD(BEH);

for S : shift use entity work.shift(beh);

for D : adsu use entity work.adsu(beh);

for r : reg use entity work.reg(beh);

for o : rom use entity work.rom(beh);

for s_1 : shi_1 use entity work.shi_1(beh);

for b : delayl use entity work.delayl(beh);

for e : delay2 use entity work.delay2(beh);

for dely3 : delay3 use entity work.delay3(beh);

for dely4 : delayd use entity work.delay4(beh);

for delylS : delayl$ use entity work.delaylS(beh);

for delyl6 : delayl6 use entity work.delayl6(beh);

for delyl7 : delayl7 use entity work.delayl7(heh);

for delyl8 : delayl8 use entity work.delay18(beh);

for g : add_g use entity work.add_g(beh);

for h : reg_h use entity work.reg_h(beh);

for i : add_i use entity work.add_i(beh);

for j : shi_2 use entity work.shi_2(beh);

for t : result use entity work.result(beh);

signal di : bit_vector(15 downto 0);

signal ck : bit;

signal clck : bit;

signal go : bit;

signal io : bit;

signal ho : bit;

signal te : bit;

signal de : bit;

signal op,qr,st,eo0,ko,mo,qo,ro,so,uo : bit;

signal d0,d1,d2,d3,d4,dS,d6,d7 : bit_vector(1S downto 0);

Signal so0,s01,s02,503,504,505,506,507 : bit_vector(l downto 0);

signal co0,col,c02,c03,c04,c05,c06,c07 : bit_vector(l downto 0);

signal do0,do1,do2,do3,dod4,do5,do6,do7 : bit_vector(l downto 0);

signal clr : bit :=’0’;

signal set : bit :="0’;

signal el,e2,e3,ed,e5,e6,e7,e8,e9,e10,el1,e12,e13,e14,e15,e16 :
bit_vector(15 downto 0);

signal f1,f2,f3,f4,15,16,17,18,19,f10,f11,(12,£13,f14,f15,16:
bit_vector(1S downto 0);

111

signal gl,g2,83,24,25,26,27,28 : bit_vector(15 downto 0);

signal h1,h2,h3,h4,h5,h6,h7,h8 : bit_vector(1S downto 0);

signal il,i2,i3,i4,i$,i6,i7,i8 : bit_vector(15 downto 0);

signal j1,j2,j3,j4,j5,j6,j7,j8 : bit_vector(15 downto 0);

signal r1,r2,r3,rd4,r5,r6,r7,r8 : bit_vector(l1S downto 0);

signal cr : bit_vector(15 downto 0) := "0000000000000000";

signal p : bit_vector(15 downto 0);

begin

C : clock_ge port map(ck);

ad : clock port map(clck);

a : control port map(ck,go);

b : delayl port map(go,io,ck);

e : delay2 port map(ck,ho,clck);

dely3 : delay3 port map(ho,te,clck);

dely4 : delay4 port map(te,de,clck);

delyl$: delayl$ port map(io,eo,ck);

dely16 : delayl6 port map(eo,ko,ck);

dely17 : delayl7 port map(ko,mo,ck);

dely18 : delay18 port map(mo,qo,ck);

L : LOAD port map(di,d0,d1,d2,d3,d4,ds,d6,d7,ck);

S : shift port map(d0,d1,d2,d3,d4,d5,d6,d7,

s00,so01,502,503,504,505,506,507,de);

D : adsu port map(so0,sol,s02,s03,s04,505,506,507,

co0,col,c02,c03,c04,c05,c06,c07,
ck,clr,set);

r : reg port map(co0,col,co02,co03,ced,co05,c06,c07,
do0,do1,do2,do3,dod,do5,do6,do7,
ck);

o : rom port map(do0,dol,do2,do3,do4,doS,do6,do7,
el,e2,ed,ed,eS5,e6,e7,e8,e9,e10,e11,e12,el13,el4,
elS,el6,ck);

s_1 : shi_1 port map(el,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,el13,e14,e15,e16,
f1,£2,£3,14,15,f6,17,18,09,10,f11,12,f13,f14,f15,116,
ck);

g : add_g port map(fl,f2,f3,14,15,16,7,18,{9,f10,f11,f12,f13,f14,715,f16,

gl,g2,23,24,25,26,27,28,ck,qo);
h : reg_h port map(gl,g2,g3,g4,25,26,87,28,h1,h2,h3,h4,h5,h6,h7,h8,ck);

i : add_i port map(hl,rl,h2,r2,h3,r3,h4,r4,h5,r5,k6,r6,h7,r7,h8,r8,
i1,i2,i3,i4,i5,i6,i7,i8,ck);

j : shi_2 port map(il,i2,i3,i4,is,i6,i7,i8,r1,r2,r3,rd4,r5,r6,r7,r8,
J1,j2,j3,j4,35,j6,j7,j8,cr,ho);

t : result port map(j1,j2,j3,j4,j5,j6.i7.i8,p,ck);

112

set <=1’ after § ns;

di <= "0000010110101000" after 7 ns,
"0000000000000000" after 17 ns,
"0000010110101000" after 27 ns,
"0000101101010000" after 37 ns,
"0000010110101000" after 47 ns,
"0000000000000000" after S7 ns,
"0000010110101000" after 67 ns,
"0000101101010000" after 77 ns;

end str;

113

APPENDIX C. MATLAB PROGRAM OF DECIMAL-BINARY CONVERSION

while 1
x(1,16) = 0;
y = input(’Please enter your number : ’);
ify ==
break
end
disp(’wait!’);
ify >0,
x(1) = 0;
else
x(1) = 1;
y = abs(y);
end
i=2;
for k = 1:1§;
ify > 1,
x(i) = fix(y);
=y - x();
else
x(i) = 0;
end
y=2*y;
i=i+1;
end
disp(x);
end

114

APPENDIX D. STRUCTURAL 1-D DCT HAND CALCULATION

@) 0000000000000000
+ 0000000000000000
000000000000000
., 0000000000000000
0101101010000010
—010T101010000010
+ 0000000000000000
(OT101010000010
(@), ooiotioiotooooot
+ 0101101010000010

~—0111000100100010
£ 0001011010100000
S 0000T1111000010

@ 0010110101000001

overflow

+ 0101101010000010

0111000100100010
+ 0010000111110000

1001001100010010

@ 0010110101000001
+0000000000000000

0001011010100000
+_0010010011000100
0011101101100100
0010110101000001

0000000000000000

0001011010100000

+ 0000111011011001
0010010101111001

@ 0010110101000001

+0000000000000000

0001011010100000
+ 0000100101011110

0001111111110
(®). op00000000000000

0000000000000000
+ 0000011111111

000001 1111111111

Fig. 19 U0 hand calculation

115

0101001000000011

+_0000000000000000
0101001000000011

(3) 0001100000000101

+

0100010111111111
+

1011010011111 11
0001100000000101

+ 0011100111111101

0100010111111111
+ 0001011010011111

0101110010011110

®

Q)

0011100111111101
+ 0001100000000101
0011010700000011
+ 0001011100100111
— 0100170000701010
0011100111111101
+ 0001100000000101
~ 0011070100000011T
+ 0001001100001010
~ 0100700000007707T
0001 100000000101
+ 0001100000000101
~ 00710070000000711
+ 000100100000001 1

0001100000000101

- 0001100000000101
1111001111911101

+ 0000110110000010

~ 000000010T1111%1T

Fig. 20 V1 band calculation

1) 0000000000000000 ® 0001010001011101

“+ 0000000000000000 +1100111011010111
0000000000000000 1101100100000101
2 0000000000000000 + 1111111000111011
+ 1110001100110100 1101011101000000
1110001100110100 6 0001010001011101
+ 0000000000000000 _ + 1100110110101
) T10001100110100 1101100100000101
1100111011010111 V3 .+ 1111010111010000

+ 0001010001011101 1100111011010101
1111101111001000 @ 1100111011010111
+ 1111100011001101 + 1100110110101
@ 1110100100101 1011011001000010
1100111011010111 +1111001110110101

+ 0001010001011101 1010100111110111
1111101111001000 1100111011010111
+1111110100100101 - 1100111011010111
1111100011101101 0001100010010100
+ 1110101001111101

0000001100010001

Fig. 21 V3 hand caiculation

117

(1) 0000000000000000
+ 0000000000000000
_0000000000000000
(2) 0000000000000000
+ 0000000000000000
0000000000000000
@ 0010110101000001
+ (000000000000000
0001011010100000
+ (000000000000000
0001011010100000
@ 0010110101000001
+ 0000000000000000
0001011010100000
+ 0000010110101000
0001110001001000

5) 1101001010111111
1111000001110001
1101001010111111
R oont 1
oot
@ 0010110101000001
0101 010100M0
NI

_- 0000000000000000
0000000000000000

+ 0000001111111111
0000001111111111

Fig. 22 U4 hand calculation

118

1) 0000000000000000 ® 1111001001100101

+ 0000000000000000
0000000000000000
@) 0000000000000000
+ 0001001100111110
0001001100111110
+ 0000000000000000
0001001100111110
3 0010000011011001
+ 1111001001100101
0000001011010001
+ 0000010011001111
0000011110100000
@) 0010000011011001
+ 1111001001100101
0000001011010001
+ 0000000111101000
0000010010111001

+ 0010000011011001
0001101000001011
~+ 0000000100101110
0001101100111001
1111001001100101
+ 0010000011011001
0001101000001011

v5 _+ 0000011011001110

0010000011011001
0010000011011001
~+ 0010000011011001
0011000101000101
~+_0000100000110110
0011100101111011

0010000011011001

_- 0010000011011001
1110111110010011

+ 0000111001011110
111111011111000

Fig. 23 V5 hand calculation

119

1) 0000000000000000 &) 1111010001110111

-+ 0000000000000000 _* 1111101100111001
0000000000000000 1111010101110100
@ 0000000000000000 _*+ 1111101101100100
+1110111110110000 1111000011011000
1110111110110000 (6) 1111010001110111
+0000000000000000 _+ 1111101100111001
1110111110110000 1111010101110100
@ 1111101100111001 V7 _+ 1111110000110110
+ 1111010001110111 1111000110101010
1111001000010011 @ 1111101100111001
4 1111101111101100 ~ + 1111101100111001
1110110111111111 1111100011010101

1111101100111001 -+ 1111110001101010
+ 1111010001110111 1111010100111111
1111001000010011 1111101100111001
A 1101101114141 _- 1111101100111001
1110110110010010 0000001001100011
+ 1111110101001411
1111111110110010

Fig. 24 V7 hand calculation

120

APPENDIX E. FORMATION OF 2-BIT ADDER

TWO BIT ADDER TRUTH TABLE

A.

Table XX Truth table of 2-bit adder

Qo

q;

B,

121

Table XXI (Table XX) continue

A, A, B, B, C, q Jos C,
1 0 0 0 0 1 0 0
1 0 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 1 1 0 0 1
1 0 1 0 0 0 0 1
1 0 1 0 1 0 1 1
1 0 1 1 0 0 1 1
1 0 1 1 1 1 0 1
1 1 0 0 0 1 1 0
1 1 0 0 1 0 0 1
1 1 0 1 0 0 0 1
1 1 0 1 1 0 1 1
1 l 1 0 0 0 1 1
1 1 1 0 1 1 0 1
1 1 1 1 0 1 0 1
1 1 1 1 1 1 1 1

Two bit adder has five inputs, three outputs. A,, A,, B,, and B, represent the input
and C; represents the carrier in. Q,, q, represent the output and C, represents the carrier

out. After the set up of truth table, reduction can be made by Kamaugh map.

122

\ i = \ i =
Blaofi® o0 41 Blof of' %1 s
ool [TR AT]
MBIBOQ a7~ Misa [ST
G 01 @\1 A1AOG1 £ @ J q1
Xmma\m.m @NL\MBL"_HM/U)W\ Shid
1)1 womi A1) 1
L*ﬁ_——i;_;gf/ : \/A ~~ A1A)B1C!
0 [I]1] 1] 1
01 1 1\- A A N
(— MBoa ~~npwa 0
10/ 1 i N

N

0B ! Aot
00 LR L AT e
01 1 P e
A0 B B0 Al) Co
10 1)1 11 X1
11 1] 1A ne] e
Al
ﬁ‘——-‘w’ﬂ_ i
\ /‘ % ~ AOBICI
Fig. 2§ Karnaugh map reduction
Karnaugh map reduction gives the reduced boolean expression.
q = A—IXOBIE|+-lBlEOE:'+AIElEOEi+AIZOEIE|'+‘ZIAO§IBO+A1AOBIBO
4"‘TlA-onEo“‘41505150 +;lA0§lCi+A_l§lBOCi+AIBIBOC4'+A1AOBIC(‘ (36)

123

9 = ABC, + AOBOEI' * XoEoCi + AyB,C, 37

= A +
C, = A/A,B,+A,B B,+A,A,C,*AB,C,+BB,C +A B, +AB,C (38)
{ i a’l 1™

124

LIST OF REFERENCES

L. J. D’Luna, An 8 x 8 Discrete Cosine Transform Chip with Pixel Rate Clocks,
IEEE THO0303-8/90/0000, p7-5.1 - p7-5.4.

Herbert. Taub, Digital Circuits and Microprocessors, pS8 - p8l.
R. C. Gonzalez/P. Wintz, Digital Image Processing, p121 - p122.

Emest. Meyer, VHDL opens the road to Top-Down Design, Computer Design,
Feb. 1, 1989, p57 - p62.

Lipsett/Schaefer/Ussery, VHDL : Hardware Description ana Nc.ign, Kluwer
Academic Publishers, 1989.

James R. Armstrong, Chip-Level Modeling with VHDL, Prentice Hall, 1989.
David L. Barton, A First Course in VHDL, Design Automation Guide, 1988.

IEEE Standard VHDL Language Reference Manual Std 1076-1987, Institute of
Electronics Engineers, March 1988.

386-MATLAB User’s Guide, The MathWorks, Inc.

125

